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Graph Signal

Prof Gareth W. Peters & Dr. Marta Campi (5/41)
A graph signal is a vector y € RN where each element is understood

as being measured on a node of the graph (N = |V]).

An example could be temperature over a network of monitoring
stations, or user taste preferences over a social network.

A graphical depiction of a smooth graph signal where the value of
signal at each node is displayed in colour (at one time instant).
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Graph Signal

Prof Gareth W. Peters & Dr. Marta Campi (6/41)
Formally: given an undirected weighted graph G = (V, &), with

V| = N, then a graph signal

f:V—-R

is a function defined on the vertices of the graph that maps every vertex
{Vi}i=1,..n to a real number y; == f(i) € R.

Intuitively: we often expect graph signals (y; := f(i)) to be “smooth”,
ie. neighbouring nodes are likely to be similar.

Distance d(y;,y;) is small when v; ~ v; i.e. when graph vertices
have a connecting edge association.

Can measure similarity d(y;, y;) via squared Total Variation
(Dirichlet energy):
L
TVa(y) = 5> D Ailyi—y)* =y (D— Ay =y 'Ly

i=1 j=1
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Laplacian Eigenbasis

Prof Gareth W. Peters & Dr. Marta Campi (7/41)

The graph Laplacian L gives a natural basis in which to analyse the
frequency content of a graph signal.

L=UAUT

This provides a direct generalisation of classical Fourier analysis to
signals residing on an irregular domain.

u = argmin TV;(u)
Juf2=1
u, = argmin TV;(u)
lul?=1, Lu;
u; = argmin TV,(u)

lul?=1, Lug,up



Laplacian Eigenbasis
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Prof Gareth W. Peters & Dr. Marta Campi (8/41)

The eigenvectors of the graph Laplacian can be understood as sequentially
less smooth with respect to the topology of the graph.

The corresponding eigenvalue, referred to as the frequency, gives a value
specifying how “rough” each eigenvector is relative to the others, as

measured by TV>.

Undirected graph: first Laplacian eigenvector will always be constant

with an eigenvalue of zero (A1 = 0).
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Graph Products

Prof Gareth W. Peters & Dr. Marta Campi (10/41)

Consider two undirected graphs G4 = (Va,€a) and Gg = (Vg, Eg) with
vertex sets given by Vo ={a € N|a< Ny} and Vg ={be N|b < Ng}
respectively.

Graph Product: A new graph G can be constructed by taking the
product between factor graphs G4 and Gg.

G=GaoGg=(V,€)

Definitions of graph product ¢ : G has vertex set V from factor graphs

V=V xVg=1{(a, b) € N*|a< Ngand b < Ng}
Typically, vertices are arranged in lexicographic order: i.e.

(a, b) < (d, b)iffa< d or (a=2a and b < b').

Then a specific graph product is defined by a consistent rule for
constructing £ from the factor edge sets €4 and Ep.

One can define 28 = 256 possible graph product rules.
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Graph Products °
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Adjacency & Laplacians of the product graph in terms of factor graph matrices:

Adjacency matrix Laplacian
Cartesian A, @ Ap La®Lg
Direct Ajp® Ap Da®Lg+La®Dg—La®Lg
Strong Ay @Ag+Ax D Ag Da®Lg+La®Dg—La®Lg+La®Lg
Lexicographic la@Ag +AsR®04 IA®Lg+La®0s+Da® (Nglg — Op)

D4 and Dg are the diagonal degree matrices, i.e Da = diag Aal. la and Oa
are the (Na x Na) identity matrix and matrix of ones respectively.
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Graph Products

Prof Gareth W. Peters & Dr. Marta Campi (12/41)

Cartesian product Direct product

Ga gp

I\ Q,,,.\,/—————O Strong product

Figure: Depiction of the four standard graph products
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Cartesian Product Graph Filters

Prof Gareth W. Peters & Dr. Marta Campi (13/41)
Laplacian of a Cartesian product graph satisfies:
L=La®Lg
=La®Ilg+14RLg

Can perform eigen decomposition one each graph product
component

L=(Ua®Ug)(Aa® Ap)(Uj ® Up)
=UAU"
Can develop a definition of filtering in two dimensions.
H=(Ua®Ug)g(Aa®Ag) (U} ® Ug)
= (Ua® Ug) diagvec(G) (Uy ® Ug)
=UDgU"

The matrix G € RVeXNa holds the value of the filter function
applied to the sum of pairs of eigenvalues.

G =g (A 0: 5., 85 )
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Cartesian Product Graph Filters

Prof Gareth W. Peters & Dr. Marta Campi (14/41)

By =0.01
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From Matrices to Tensors

Prof Gareth W. Peters & Dr. Marta Campi (15/41)

We can easily extend the concept of a two-dimensional product to
three or more dimensions.

Here, signals become tensors, or multidimensional arrays, and graphs
can become extremely large.
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Spectral decomposition

Prof Gareth W. Peters & Dr. Marta Campi (16/41)

RN1XN2><..

Consider a tensor graph signal Y € xNd represented in its

multi-dimensional array form.

y=vecrm (YY) <= Y =tenrum(y)

y y
(LL3) (1L23) (L33) (Lad) WL
(2,1,3) (2,2,3) (2.3.})f’(2.4,3) ) (1,1,2)
. — vecgm (+)
s Ty a2 w8y o4 B G4 _— (1,1,3)
. (2,1,2) (2,2,2) (2,5512)"(2‘4.2) 3,3) (4,4,3) (1,2,1)
ﬁ (LLD (L2,1) (L31) (L41) 32 G42) tenp () :
n 211 221) 231) (241 2 G421 7 (2.1,1)
(B.L1) (3.2.1) (3,3,1) (3,4,1) :
(4L11) (42.1) (4,3,1) (4,4,1) (4,4,3)

Figure: Depiction of the process of converting an order-3 tensor between its
multidimensional array and vector form in row-major (RM) order. Note that
the elements in the vectorised signal are lexicographically ordered.
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Define the Graph Fourier Transform (GFT) and its corresponding inverse
(IGFT) of this signal as follows:

T

GFT(Y) = tengm (UTy) = tengm (@ Ul ) vecrm ()

IGFT(Y) = tengm (Uy) = tengru <<® ut ) vecrm ( ))

Action of a general spectral operator: first apply GFT to signal Y &
then apply scaling function to each spectral component. Next transform
back into the vertex domain via the IGFT.

V' =IGFT (G o GFT(Y))
Matrix operator generating this transformation is:

H = U diagvecgm (G)U"
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Graph Signal Reconstruction Objectives

Prof Gareth W. Peters & Dr. Marta Campi (19/41)

Goal of Graph Signal Reconstruction (GSR): is to estimate the value
of a partially observed graph signal at nodes where no data was collected.

GSR on a Cartesian product graph where available data is partially
observed signal Y € RN*T where only an arbitrary subset
S = {(m, t1),(n2, t2), ...} of the signal elements were recorded.

All other missing elements of Y are set to zero.

Binary Sensing Matrix S € {0, 1}V*T tracks missing elements of Y:

S,, — {1 if (n,t)eS

0 otherwise.
Data input to GSR problem is as follows:

input data = { Y € R"7, S € {0,1}¥7, A€ RV |
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Graph Signal Reconstruction Objectives

Prof Gareth W. Peters & Dr. Marta Campi (20/41)

Assume Y is a noisy partial observation of underlying signal F € RV*T,
assumed to be smooth w.r.t. the graph topology:

Y=S0 (F+E)

Matrix E represents the model error assumed an independent normal
distribution with unit variance.

Distribution of Y given latent graph signal F is
vec (Y) |F ~ N(vec (S®F), diagvec (S))
Covariance matrix diagvec (S) is semi-positive definite by

construction and reflects constraint that some elements of Y are
zero with probability 1.

Note: we also extended these methods to exponential family models &
categorical and ordinal data settings on graphs!
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Graph Signal Reconstruction Objectives

Prof Gareth W. Peters & Dr. Marta Campi (21/41)

Bayesian estimation sets a prior on the latent random graph signal F
which is specified as smooth with respect to the topology of the graph:

w.l.0.g. assume the prior mean for F is zero across all elements.

vec (F) ~ N (0, v~ 'H?)

Given observations Y then Bayes’ rule gives posterior over F:

7r(vec (Y) | F)’]T(F).

m(vec(F) |Y) = )

In the Gaussian-Gaussian model this produces the posterior mean:

vec (F) = E[vec (F) | Y] = (diag vec (S) + VH*) "ec (Y)
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Graph Signal Reconstruction Solvers

Prof Gareth W. Peters & Dr. Marta Campi (22/41)

-1
Calculating;: (diag vec (S) + A/H’2>

Coefficient matrix defining the system is size NT x NT
= direct methods e.g. Gaussian elimination infeasible
= direct computational cost of inversion O (N3 T3) arithmetic operations.

Alternative solvers include: stationary iterative methods; Krylov methods;
or multigrid methods.

In the following work:

Antonian, E. B., Peters, G. W., Chantler, M. J. (2024). Bayesian
Reconstruction of Cartesian Product Graph Signals with General Patterns
of Missing Data. Journal of the Franklin Institute, 361.9 (2024): 106805.

we propose a stationary iterative method and a Krylov method and
compare their relative behaviour.

Convergence behaviour of each is derived theoretically and verified
numerically.

In both cases, we show that each step of the iterative process can be completed
in O(N?>T + NT?) operations, making a solution feasible for relatively large
graph problems.
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Testing for Utilty of GSR

Prof Gareth W. Peters & Dr. Marta Campi (24/41)

When is Graph Signal Reconstruction effective?

i.e. Is the partially observed signal exhibiting smoothness with
respect to the available graph?

Illustrated for single graph setting...

1. Downsample partially observed signal y € RV into a vector y € RN
s.t. only observed elements kept.

2. Adjust adjacency matrix to produce A € RNV which represents
the connections between the available nodes

3. Create corresponding Laplacian L € RNXN.
4. Pre-whiten y for mean of zero and unit variance.

5. Compute the total square variation of y as
~ N ~ ~
TVa(y) =y Ly=>) A (UTY);
n=1

which can be used for a test.
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Testing for Utilty of GSR

We define the following hypothesis test:
Null hypothesis Hj: The vector y is spherically distributed in the
Fourier domain.
Alternative hypothesis #;: y is biased towards low-frequency
Fourier components.

Under #o: (UTY), ~ A (0, 1) and Cov ((GTy),, (GT’y)j) = 5.

= TVy(y) is the sum of N independent gamma random variables,
where

Prof Gareth W. Peters & Dr. Marta Campi (25/41)

X (UTY)2 ~ Tk =

Hence: o _ _

E {An(uTy)ﬂ =, Var[ . (U79) } =232
so by Lyapunov central limit theorem, under the null hypothesis, TVx(y)
will be approximately distributed as (N — 00) by

TVa(¥)[Ho ~ ZAm 2ZA2 = N (Tr(L), 2TH(L?))

n=1
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Prof Gareth W. Peters & Dr. Marta Campi (27/41)

Problem: Pricing securities across multiple dimensions when
observations are extremely sparse.

Green bond yields depend on multiple characteristics
simultaneously:

Environmental purpose (solar, wind, water, transportation...)
Credit rating (AAA, AA+, AA, ... BBB+)

Maturity (1 year to 50 years)

Tax treatment (federal /state exempt, AMT, taxable...)

Extreme sparsity: 99.27% of characteristic combinations have no
observable prices

Market size: $1.5 trillion globally — accurate pricing matters!

= Neither traditional econometrics nor standard ML handles this
well.
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Data: US Municipal Green Bonds

Prof Gareth W. Peters & Dr. Marta Campi (28/41)

Dataset: Weekly yield-to-maturity from Bloomberg
829 distinct bonds with sufficient trading history
429 weekly observations (June 2018 — March 2023)
Period includes: COVID-19 disruption, Fed rate hikes

Five-dimensional tensor structure:

Dimension Size Graph Structure

Time 429 Chain (weekly)
Environmental purpose 161  Hierarchical tree (IEA/Bloomberg)
Credit rating 8 Ordered chain (AAA — BBB+)
Maturity 8 Chain (0-1y — 40-50y)

Tax status 7 Custom graph (legal provisions)

Theoretical tensor size: 429 x 161 x 8 x 8 x 7 =~ 31 million values



Why Graph Structure?

Credit Ratings: Ordered chain

AAA & AA+ < AA & ... &
BBB-+

Adjacent ratings = similar
default risk

Maturity: Ordered chain
0-1y +» 1-2y < ... & 40-50y

Term structure smoothness

UC SANTA BARBARA

Prof Gareth W. Peters & Dr. Marta Campi (29/41)

Environmental Purpose: Hierarchy
Solar ~ Wind (both renewable)

Renewable £ Water
infrastructure

Tax Status: Custom graph

Edges connect statuses sharing
legal provisions

Similar tax = similar investor
base

Key insight: Encode domain knowledge through graphs, don't learn
from sparse data!
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Validating Graph Structure: Isotropy Test

Prof Gareth W. Peters & Dr. Marta Campi (30/41)

Key question: Is the assumed graph structure actually appropriate?

Isotropy test: Compare observed smoothness to random signals

7 TVa(§) — E[TV:]

v/ Var[TV;]

Maturity Bucket Mean Z-score Aggregate Z  p-value

5-10 years —0.16 —2.58 0.005
10-20 years —0.83 —13.06 < 0.001
20-30 years —0.77 —12.13 < 0.001
30-40 years —0.15 —2.25 0.012

Result: All buckets reject Hy (p < 0.02). Yields ARE smoother than
random on the rating chain — graph structure is empirically validated!
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Graph Structures -

Prof Gareth W. Peters & Dr. Marta Campi (31/41)

. General Obligation p *
. .
Multifamily Hsg
Buifd America Bonds ..
School District}
Transportation[ ~*
. -' Higher Education [Fed Tax-Exempt/st Taxable | [Fed Tax-Exempt ]
LA
JITWN Tax status graph (legal provisions)

Environmental purpose hierarchy
(IEA/Bloomberg taxonomy)
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Data Sparsity: Bond Distribution

Prof Gareth W. Peters & Dr. Marta Campi (32/41)

Number of Bonds by Credit Rating x Maturity

<
g- 0 8 104 234 8 4 1000
3 1 5 30 98 175 21 4 0
800
3 1 2 18 101 201 a 13 4
3
2 s
£3 o 9 61 138 219 61 15 2 L 600 S
< s
= g
Tsx- 0 7 25 55 a1 34 9 4 2
S 5
a00 2
< o 1 16 6 66 18 3 4
< 0 0 0 5 21 B 1 0 -200
.
a- o 0 3 52 70 a 15 2
. . . . . -0
o1y 12y 25y 1020y 2030y 3040y 4050y

510y ;
Maturity Bucket

Number of bonds by Credit Rating x Maturity. Note extreme sparsity at short
maturities (0—2y) and lower ratings (A-, BBB+). This is why standard
methods fail.



Predictive Performance: GSR vs Baselines
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Prof Gareth W. Peters & Dr. Marta Campi (33/41)

Validation
Model MSE R2
GSR (ours) 0.332 0.819
KGR (ours) 0.333 0.820
Ridge 0.501 0.729
Lasso 0.482 0.739

Test
MSE R2
0.319 0.823
0.317 0.824
0.497 0.725
0.506 0.720

36% reduction in prediction error vs Ridge/Lasso

Test set: 83 bonds never seen during training

Graph structure prevents overfitting despite 99% missing data

Learned Seny = 2.0 (strongest) reveals market fragmentation



Out-of-Sample Predictions: GSR e
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Water: Current Refunding AA+  Bond Bank: Current Refunding A+ Water: Transit Imps. AA
10:20y, Fed Taxable/St Tax-Exempt  2-5y, Fed & St Tax-Exempt  0-1y, Fed Tax-Exempt/St Taxable

~—— Ground truth

o Predicted
% !
2% f )
0% > =
Transportation: Green Purpose A General: Sewer Imps. AA General: Green Purpose A
40,50y, Fed Taxable/St Tax-Exempt 01y, Fed & St Tax-Exempt 25y, Fed & St Tax-Exempt

Yield

General Obligation: Sewer Imps. A+ Transportation: Sewer Imps. A+ Power: Repayment Of Bank Loan AA-
1,2y, Fed Tax-Exempt/St Taxable 40-50y. Fed & St Tax-Exempt -1y, Fed Taxable/St Tax-Exempt

20329020 502 5022 5023 20329020 502 5022 5023 20029020 502 5022 5073

Date

GSR predictions (orange) vs actual yields (blue) for 9 test bonds. Shaded
regions show £2¢ uncertainty. Model captures both levels and dynamics
despite never seeing these bonds.
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Water: Current Refunding AA+  Bond Bank: Current Refunding A+ Water: Transit Imps. AA
10:20y, Fed Taxable/St Tax-Exempt  2-5y, Fed & St Tax-Exempt  0-1y, Fed Tax-Exempt/St Taxable

~—— Ground truth

ool s
A
4% 4
/ |
296 T f A A/L“
N Ao
0% Mo’
Transportation: Green Purpose A General: Sewer Imps. AA General: Green Purpose A
Aﬁezoy Fed Taxable/St Tax-Exempt 0-1y, Fed & St Tax-Exempt. 2-5y, Fed & St Tax-Exempt

wl N

X f
S E JM%/M

W

Yield

General Obligation: Sewer Imps. A+ Transportation: Sewer Imps. A+ Power: Repayment Of Bank Loan AA-
1,2y, Fed Tax-Exempt/St Taxable 40-50y. Fed & St Tax-Exempt -1y, Fed Taxable/St Tax-Exempt

, Al
% ’\\W\:ﬁwm

203220105073 5072 5023 201220105073 5072 5023 2009 5020 5073 5072 ,023

Date

KGR predictions (green) incorporate macroeconomic covariates. Better
captures sharp market movements (2022 Fed rate hikes). Uncertainty bands
adapt to changing conditions.
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Green Bond Yield Curves by Credit Rating (n = 100 bonds only)

Yield (%)

10 20 30 40
Maturity (Years)

N AAA(N=1966) WEN AA+ (n=334) EEE AA(n=381) WEE AA-(n=505) M A+ (n=221) A(n=150) WM BBB+ (n=186)

Yield curves by credit rating (ratings with n > 100 bonds). Dashed lines = NS
fit; points = observed averages. Enables yield interpolation at any maturity.
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Reconstructed Yield Surface: BB+ Rated Bonds
Reconstructed Yield Surface: AAA Rated Bonds "
Nelson-Siegel on Fixed Tenor Grid (jun 2018 - Mar 2023) Nelson-Siegel on Fixed Tenor Grid (Jun 2018 - Mar 2023)

Yield (%)
Yield (%)

s

by 15
oy Date.

e

AAA-rated bonds BBB+ rated bonds

Time evolution of yield curves. COVID decline (March 2020), Fed rate hikes
(2022). BBB+ shows higher levels and greater volatility than AAA.



Related Publications

Graph Signals

Product Graph Structures

Graph Signal Reconstruction

Is GSR Appropriate?

Application: US Municipal Green Bond Markets
Conclusions

Thank You and References

«O> «Fr «Er =)

DA



UC SANTA BARBARA

Conclusions
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e Problem: 99% missing data in high-dimensional bond market

Solution: Graph-regularized learning with validated structure

o Isotropy tests confirm smoothness (p < 0.001)
o Credit chains, maturity sequences, environmental hierarchies

Results: R? = 0.82 vs 0.72 for Ridge/Lasso (36% error reduction)

e Practical workflow: GSR — Nelson-Siegel — actionable yield
curves

Extensions: Corporate bonds, MBS, private equity, real estate
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