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Graph Signal

A graph signal is a vector y ∈ RN where each element is understood
as being measured on a node of the graph (N = |V|).

An example could be temperature over a network of monitoring
stations, or user taste preferences over a social network.

A graphical depiction of a smooth graph signal where the value of
signal at each node is displayed in colour (at one time instant).
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Graph Signal

Formally: given an undirected weighted graph G = (V, E), with
|V | = N, then a graph signal

f : V → R

is a function defined on the vertices of the graph that maps every vertex
{vi}i=1,...,N to a real number yi := f (i) ∈ R.

Intuitively: we often expect graph signals (yi := f (i)) to be “smooth”,
ie. neighbouring nodes are likely to be similar.

Distance d(yi , yj) is small when vi ∼ vj i.e. when graph vertices
have a connecting edge association.

Can measure similarity d(yi , yj) via squared Total Variation
(Dirichlet energy):

TV2(y) =
1

2

N∑
i=1

N∑
j=1

Aij(yi − yj)
2 = y⊤(D − A)y = y⊤Ly
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Laplacian Eigenbasis

The graph Laplacian L gives a natural basis in which to analyse the
frequency content of a graph signal.

L = UΛU⊤

This provides a direct generalisation of classical Fourier analysis to
signals residing on an irregular domain.

u1 = argmin
|u|2=1

TV2(u)

u2 = argmin
|u|2=1, ⊥u1

TV2(u)

u3 = argmin
|u|2=1, ⊥u1,u2

TV2(u)

u4 = . . .
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Laplacian Eigenbasis

λ1 = 0 λ2 = 0.004 λ3 = 0.004

λ4 = 0.016 λ5 = 0.016 λ6 = 0.035

λ7 = 0.035 λ8 = 0.063 λ9 = 0.063

The eigenvectors of the graph Laplacian can be understood as sequentially
less smooth with respect to the topology of the graph.

The corresponding eigenvalue, referred to as the frequency, gives a value
specifying how “rough” each eigenvector is relative to the others, as
measured by TV2.

Undirected graph: first Laplacian eigenvector will always be constant
with an eigenvalue of zero (λ1 = 0).
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Graph Products

Consider two undirected graphs GA = (VA, EA) and GB = (VB , EB) with
vertex sets given by VA = {a ∈ N | a ≤ NA} and VB = {b ∈ N | b ≤ NB}
respectively.

Graph Product: A new graph G can be constructed by taking the
product between factor graphs GA and GB .

G = GA ⋄ GB = (V, E)

Definitions of graph product ⋄ : G has vertex set V from factor graphs

V = VA × VB = {(a, b) ∈ N2 | a ≤ NA and b ≤ NB}
Typically, vertices are arranged in lexicographic order: i.e.
(a, b) ≤ (a′, b′) iff a < a′ or (a = a′ and b ≤ b′).

Then a specific graph product is defined by a consistent rule for
constructing E from the factor edge sets EA and EB .

One can define 28 = 256 possible graph product rules.
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Graph Products

Adjacency & Laplacians of the product graph in terms of factor graph matrices:

Adjacency matrix Laplacian

Cartesian AA ⊕ AB LA ⊕ LB

Direct AA ⊗ AB DA ⊗ LB + LA ⊗DB − LA ⊗ LB

Strong AA ⊗ AB + AA ⊕ AB DA ⊗ LB + LA ⊗DB − LA ⊗ LB + LA ⊕ LB

Lexicographic IA ⊗ AB + AA ⊗OA IA ⊗ LB + LA ⊗OB +DA ⊗ (NB IB −OB)

DA and DB are the diagonal degree matrices, i.e DA = diagAA1. IA and OA

are the (NA × NA) identity matrix and matrix of ones respectively.
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Graph Products

Lexicographic productStrong product

Direct productCartesian product

GA GB

Figure: Depiction of the four standard graph products
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Cartesian Product Graph Filters

Laplacian of a Cartesian product graph satisfies:

L = LA ⊕ LB

= LA ⊗ IB + IA ⊗ LB

Can perform eigen decomposition one each graph product
component

L = (UA ⊗UB)(ΛA ⊕ΛB)(U
⊤
A ⊗U⊤

B )

= UΛU⊤

Can develop a definition of filtering in two dimensions.

H =
(
UA ⊗UB

)
g
(
ΛA ⊕ΛB

) (
U⊤

A ⊗U⊤
B

)
=
(
UA ⊗UB

)
diag vec (G)

(
U⊤

A ⊗U⊤
B

)
= UDGU

⊤

The matrix G ∈ RNB×NA holds the value of the filter function
applied to the sum of pairs of eigenvalues.

Gba = g
(
λ(A)
a , λ

(B)
b ; βa, βb

)
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Cartesian Product Graph Filters

βT = 0.01 βT = 1

βN = 0.01

βN = 1

βN

βT
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From Matrices to Tensors

We can easily extend the concept of a two-dimensional product to
three or more dimensions.

Here, signals become tensors, or multidimensional arrays, and graphs
can become extremely large.

GA GB GC
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Spectral decomposition

Consider a tensor graph signal Y ∈ RN1×N2×...×Nd represented in its
multi-dimensional array form.

y = vecRM (Y) ⇐⇒ Y = tenRM (y)

n1

n2

n3

(1, 1, 3) (1, 2, 3) (1, 3, 3) (1, 4, 3)

(2, 1, 3) (2, 2, 3) (2, 3, 3) (2, 4, 3)

(3, 1, 3) (3, 2, 3) (3, 3, 3) (3, 4, 3)

(4, 1, 3) (4, 2, 3) (4, 3, 3) (4, 4, 3)

(1, 1, 2) (1, 2, 2) (1, 3, 2) (1, 4, 2)

(2, 1, 2) (2, 2, 2) (2, 3, 2) (2, 4, 2)

(3, 1, 2) (3, 2, 2) (3, 3, 2) (3, 4, 2)

(4, 1, 2) (4, 2, 2) (4, 3, 2) (4, 4, 2)

(1, 1, 1) (1, 2, 1) (1, 3, 1) (1, 4, 1)

(2, 1, 1) (2, 2, 1) (2, 3, 1) (2, 4, 1)

(3, 1, 1) (3, 2, 1) (3, 3, 1) (3, 4, 1)

(4, 1, 1) (4, 2, 1) (4, 3, 1) (4, 4, 1)

vecRM(·)

tenRM(·)

yY

(1, 1, 1)

(1, 1, 2)

(1, 1, 3)

(1, 2, 1)

...

(2, 1, 1)

...

(4, 4, 3)

Figure: Depiction of the process of converting an order-3 tensor between its
multidimensional array and vector form in row-major (RM) order. Note that
the elements in the vectorised signal are lexicographically ordered.
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Spectral decomposition

Define the Graph Fourier Transform (GFT) and its corresponding inverse
(IGFT) of this signal as follows:

GFT(Y) = tenRM
(
U⊤y

)
= tenRM

( d⊗
i=1

U (i)

)⊤

vecRM (Y)


IGFT(Y) = tenRM (Uy) = tenRM

((
d⊗

i=1

U (i)

)
vecRM (Y)

)

Action of a general spectral operator: first apply GFT to signal Y &
then apply scaling function to each spectral component. Next transform
back into the vertex domain via the IGFT.

Y ′ = IGFT (G ◦ GFT(Y))

Matrix operator generating this transformation is:

H = U diag vecRM (G)U⊤
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Graph Signal Reconstruction Objectives

Goal of Graph Signal Reconstruction (GSR): is to estimate the value
of a partially observed graph signal at nodes where no data was collected.

GSR on a Cartesian product graph where available data is partially
observed signal Y ∈ RN×T where only an arbitrary subset
S = {(n1, t1), (n2, t2), . . . } of the signal elements were recorded.

All other missing elements of Y are set to zero.

Binary Sensing Matrix S ∈ {0, 1}N×T tracks missing elements of Y:

Snt =

{
1 if (n, t) ∈ S
0 otherwise.

Data input to GSR problem is as follows:

input data =
{
Y ∈ RN×T , S ∈ {0, 1}N×T , A ∈ RNT×NT

}
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Graph Signal Reconstruction Objectives

Assume Y is a noisy partial observation of underlying signal F ∈ RN×T ,
assumed to be smooth w.r.t. the graph topology:

Y = S⊙
(
F+ E

)
Matrix E represents the model error assumed an independent normal
distribution with unit variance.

Distribution of Y given latent graph signal F is

vec (Y) |F ∼ N
(
vec (S⊙ F) , diag vec (S)

)

Covariance matrix diag vec (S) is semi-positive definite by
construction and reflects constraint that some elements of Y are
zero with probability 1.

Note: we also extended these methods to exponential family models &
categorical and ordinal data settings on graphs!
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Graph Signal Reconstruction Objectives

Bayesian estimation sets a prior on the latent random graph signal F
which is specified as smooth with respect to the topology of the graph:

w.l.o.g. assume the prior mean for F is zero across all elements.

vec (F) ∼ N
(
0, γ−1H2

)
Given observations Y then Bayes’ rule gives posterior over F:

π
(
vec (F) |Y

)
=

π
(
vec (Y) |F

)
π(F)

π(Y)
.

In the Gaussian-Gaussian model this produces the posterior mean:

v̂ec (F) = E [vec (F) |Y] =
(
diag vec (S) + γH−2

)−1

vec (Y)
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Graph Signal Reconstruction Solvers

Calculating:
(
diag vec (S) + γH−2

)−1

Coefficient matrix defining the system is size NT × NT
⇒ direct methods e.g. Gaussian elimination infeasible
⇒ direct computational cost of inversion O

(
N3T 3

)
arithmetic operations.

Alternative solvers include: stationary iterative methods; Krylov methods;
or multigrid methods.

In the following work:

Antonian, E. B., Peters, G. W., Chantler, M. J. (2024). Bayesian

Reconstruction of Cartesian Product Graph Signals with General Patterns

of Missing Data. Journal of the Franklin Institute, 361.9 (2024): 106805.

we propose a stationary iterative method and a Krylov method and
compare their relative behaviour.

Convergence behaviour of each is derived theoretically and verified
numerically.

In both cases, we show that each step of the iterative process can be completed

in O(N2T + NT 2) operations, making a solution feasible for relatively large

graph problems.
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Testing for Utilty of GSR

When is Graph Signal Reconstruction effective?

i.e. Is the partially observed signal exhibiting smoothness with
respect to the available graph?

Illustrated for single graph setting...

1. Downsample partially observed signal y ∈ RN into a vector ỹ ∈ RÑ

s.t. only observed elements kept.

2. Adjust adjacency matrix to produce Ã ∈ RÑ×Ñ , which represents
the connections between the available nodes

3. Create corresponding Laplacian L̃ ∈ RÑ×Ñ .

4. Pre-whiten ỹ for mean of zero and unit variance.

5. Compute the total square variation of ỹ as

TV2(ỹ) = ỹ⊤ L̃ ỹ =
Ñ∑

n=1

λ̃n (Ũ
⊤ỹ)2n

which can be used for a test.
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Testing for Utilty of GSR

We define the following hypothesis test:

Null hypothesis H0: The vector ỹ is spherically distributed in the
Fourier domain.

Alternative hypothesis H1: ỹ is biased towards low-frequency
Fourier components.

Under H0: (Ũ⊤ỹ)n ∼ N (0, 1) and Cov
(
(Ũ⊤ỹ)i , (Ũ⊤ỹ)j

)
= δij .

⇒ TV2(ỹ) is the sum of Ñ independent gamma random variables,
where

λ̃n (Ũ
⊤ỹ)2n ∼ Γ(k =

1

2
, θ = 2λ̃n)

Hence:
E
[
λ̃n (Ũ

⊤ỹ)2n

]
= λ̃n, Var

[
λ̃n (Ũ

⊤ỹ)2n

]
= 2λ̃2

n

so by Lyapunov central limit theorem, under the null hypothesis, TV2(ỹ)

will be approximately distributed as (Ñ → ∞) by

TV2(ỹ)|H0 ∼ N

 Ñ∑
n=1

λ̃n, 2
Ñ∑

n=1

λ̃2
n

 = N
(
Tr(L̃), 2Tr(L̃2)

)

Prof Gareth W. Peters & Dr. Marta Campi (25/41)



Table of contents

Related Publications

Graph Signals

Product Graph Structures

Graph Signal Reconstruction

Is GSR Appropriate?

Application: US Municipal Green Bond Markets

Conclusions

Thank You and References

Prof Gareth W. Peters & Dr. Marta Campi (26/41)



Green Bond Markets: The Challenge

Problem: Pricing securities across multiple dimensions when
observations are extremely sparse.

Green bond yields depend on multiple characteristics
simultaneously:

Environmental purpose (solar, wind, water, transportation...)
Credit rating (AAA, AA+, AA, ... BBB+)
Maturity (1 year to 50 years)
Tax treatment (federal/state exempt, AMT, taxable...)

Extreme sparsity: 99.27% of characteristic combinations have no
observable prices

Market size: $1.5 trillion globally — accurate pricing matters!

⇒ Neither traditional econometrics nor standard ML handles this
well.
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Data: US Municipal Green Bonds

Dataset: Weekly yield-to-maturity from Bloomberg

829 distinct bonds with sufficient trading history

429 weekly observations (June 2018 – March 2023)

Period includes: COVID-19 disruption, Fed rate hikes

Five-dimensional tensor structure:

Dimension Size Graph Structure

Time 429 Chain (weekly)
Environmental purpose 161 Hierarchical tree (IEA/Bloomberg)
Credit rating 8 Ordered chain (AAA → BBB+)
Maturity 8 Chain (0-1y → 40-50y)
Tax status 7 Custom graph (legal provisions)

Theoretical tensor size: 429× 161× 8× 8× 7 ≈ 31 million values
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Why Graph Structure?

Credit Ratings: Ordered chain

AAA ↔ AA+ ↔ AA ↔ ... ↔
BBB+

Adjacent ratings = similar
default risk

Maturity: Ordered chain

0-1y ↔ 1-2y ↔ ... ↔ 40-50y

Term structure smoothness

Environmental Purpose: Hierarchy

Solar ∼ Wind (both renewable)

Renewable ̸= Water
infrastructure

Tax Status: Custom graph

Edges connect statuses sharing
legal provisions

Similar tax ⇒ similar investor
base

Key insight: Encode domain knowledge through graphs, don’t learn
from sparse data!
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Validating Graph Structure: Isotropy Test

Key question: Is the assumed graph structure actually appropriate?

Isotropy test: Compare observed smoothness to random signals

Z =
TV2(ỹ)− E[TV2]√

Var[TV2]

Maturity Bucket Mean Z -score Aggregate Z p-value

5–10 years −0.16 −2.58 0.005
10–20 years −0.83 −13.06 < 0.001
20–30 years −0.77 −12.13 < 0.001
30–40 years −0.15 −2.25 0.012

Result: All buckets reject H0 (p < 0.02). Yields ARE smoother than
random on the rating chain — graph structure is empirically validated!
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Graph Structures

Power

Utilities

Build America Bonds

Water

General Obligation

School District

Higher Education

Development

General

Education

Bond Bank

Multifamily Hsg

Housing

Pollution

Transportation

AirportMedical Facilities

Environmental purpose hierarchy
(IEA/Bloomberg taxonomy)

Fed & St Tax-Exempt

Fed Taxable/St Tax-Exempt

Fed Tax-Exempt/St Taxable

Fed BQ/St Tax-Exempt

Fed Tax-Exempt

AMT/St Tax-Exempt

Fed Taxable/St Taxable

Tax status graph (legal provisions)
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Data Sparsity: Bond Distribution

Number of bonds by Credit Rating × Maturity. Note extreme sparsity at short
maturities (0–2y) and lower ratings (A-, BBB+). This is why standard
methods fail.
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Predictive Performance: GSR vs Baselines

Validation Test

Model MSE R² MSE R²

GSR (ours) 0.332 0.819 0.319 0.823
KGR (ours) 0.333 0.820 0.317 0.824
Ridge 0.501 0.729 0.497 0.725
Lasso 0.482 0.739 0.506 0.720

• 36% reduction in prediction error vs Ridge/Lasso

• Test set: 83 bonds never seen during training

• Graph structure prevents overfitting despite 99% missing data

• Learned βenv = 2.0 (strongest) reveals market fragmentation
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Out-of-Sample Predictions: GSR

0%

2%

4%

6%

8%

Water: Current Refunding AA+
10-20y, Fed Taxable/St Tax-Exempt

Ground truth
Predicted

Bond Bank: Current Refunding A+
2-5y, Fed & St Tax-Exempt

Water: Transit Imps. AA
0-1y, Fed Tax-Exempt/St Taxable

0%

2%

4%

6%

8%

Transportation: Green Purpose A
40-50y, Fed Taxable/St Tax-Exempt

General: Sewer Imps. AA
0-1y, Fed & St Tax-Exempt

General: Green Purpose A
2-5y, Fed & St Tax-Exempt

2019 2020 2021 2022 2023

0%

2%

4%

6%

8%

General Obligation: Sewer Imps. A+
1-2y, Fed Tax-Exempt/St Taxable

2019 2020 2021 2022 2023

Transportation: Sewer Imps. A+
40-50y, Fed & St Tax-Exempt

2019 2020 2021 2022 2023

Power: Repayment Of Bank Loan AA-
0-1y, Fed Taxable/St Tax-Exempt

Date

Yi
el

d

GSR predictions (orange) vs actual yields (blue) for 9 test bonds. Shaded
regions show ±2σ uncertainty. Model captures both levels and dynamics
despite never seeing these bonds.
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Out-of-Sample Predictions: KGR

0%

2%

4%

6%

8%

Water: Current Refunding AA+
10-20y, Fed Taxable/St Tax-Exempt

Ground truth
Predicted

Bond Bank: Current Refunding A+
2-5y, Fed & St Tax-Exempt

Water: Transit Imps. AA
0-1y, Fed Tax-Exempt/St Taxable
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General: Green Purpose A
2-5y, Fed & St Tax-Exempt

2019 2020 2021 2022 2023
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4%

6%

8%

General Obligation: Sewer Imps. A+
1-2y, Fed Tax-Exempt/St Taxable

2019 2020 2021 2022 2023

Transportation: Sewer Imps. A+
40-50y, Fed & St Tax-Exempt

2019 2020 2021 2022 2023
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0-1y, Fed Taxable/St Tax-Exempt
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Yi
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d

KGR predictions (green) incorporate macroeconomic covariates. Better
captures sharp market movements (2022 Fed rate hikes). Uncertainty bands
adapt to changing conditions.
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Nelson-Siegel: Fitted Yield Curves

Yield curves by credit rating (ratings with n ≥ 100 bonds). Dashed lines = NS
fit; points = observed averages. Enables yield interpolation at any maturity.
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Yield Surface Dynamics

AAA-rated bonds BBB+ rated bonds

Time evolution of yield curves. COVID decline (March 2020), Fed rate hikes
(2022). BBB+ shows higher levels and greater volatility than AAA.
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Conclusions

• Problem: 99% missing data in high-dimensional bond market

• Solution: Graph-regularized learning with validated structure

◦ Isotropy tests confirm smoothness (p < 0.001)
◦ Credit chains, maturity sequences, environmental hierarchies

• Results: R² = 0.82 vs 0.72 for Ridge/Lasso (36% error reduction)

• Practical workflow: GSR → Nelson-Siegel → actionable yield
curves

• Extensions: Corporate bonds, MBS, private equity, real estate
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