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Abstract

Developing accurate and comprehensive understanding of interest rate risk expo-
sure is crucial for well-developed risk assessment and management practices across
regulatory organizations and financial institutions. To further understanding in this
area, we study the problem of modeling cross-country dependencies across multiple
sovereign yield curves. A novel dynamic extension of the classical Nelson-Siegel
model is proposed alongside a flexible covariance regression framework to construct a
multi-yield curve model capable of characterizing cross-curve dependencies over the
term structures of multiple yield curves. A key innovation in the proposed approach is
the use of novel feature extraction techniques to describe cross-curve dynamics using
only covariates reflecting information endogenous to the underlying yield curves of
interest. Furthermore, we develop a comprehensive multi-yield curve stress testing
framework that enables structurally interpretable stress testing and allows for rigorous
statistical classification of different shock structures based on their aggregate cross-
curve effects. Efficacy of the framework is demonstrated through empirical application
of sovereign yield curves of eight different countries. The methodology successfully
captures cross-curve dependencies and shows effective stress testing capabilities in a
variety of different shock scenarios.

Keywords: yield curve, multi-curve, cointegration, scenario analysis

∗Corresponding author: isaiahkatz@ucsb.edu
†Email: garethpeters@ucsb.edu
‡Email: mcampi@pasteur.fr

1



1 Introduction

Proper assessment of interest rate risk is a core component of modern risk management

and evaluation tools. As a result, there has been significant development in both models

and evaluation frameworks looking to characterize interest rate dynamics and dependency

structures. Understanding these complex dependency structures is essential for central

banks, regulatory bodies, and financial institutions managing portfolios with significant

exposure to cross-country interest rate risk. To this end, we present a novel approach to

modeling dynamic dependency structures across multiple yield curves.

1.1 Stress Testing

Financial stress tests are a key tool in evaluating how dynamic financial systems respond

to severe shocks and adverse events. These tests function by simulating effects of extreme

economic disruptions on collections of risk factors (i.e., security prices or bond yields)

before assessing how shifts in these risk factors translate to tangible effects. Care must be

taken in the development of complex risk models and stress testing methodologies. While

well-designed frameworks can be highly effective risk mitigation tools, poorly structured or

otherwise non-comprehensive models may understate risks associated with adverse events.

Consequently, a number of institutions have developed formal regulatory guidelines for

these frameworks; examples include the bank stress testing principles outlined by the

Basel Committee on Banking Supervision (BCBS)[BCBS, 2018], and the European Union

insurance industry regulations established in the Solvency II directive [European Parliament

and Council, 2009]. Further discussion on several of these frameworks is provided by

[Glasserman and Tangirala, 2016].

With the evolution of regulatory guidelines and widespread adoption of stress testing and

scenario analysis at the institutional level, there has been an increased focus in developing
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highly specialized risk models. These models are designed and calibrated to specifically

assess risk exposure in particular areas, such as credit, liquidity, and interest rate risk [Cihak,

2007]. Several models covering these and related areas in further detail are explored across

the literature [Cont et al., 2020], [Abdymomunov et al., 2024]. Of particular relevance here

are models and techniques used to evaluate interest rate risk. Many of these approaches are

structurally similar; they first fit an appropriate model to a yield curve of interest, then

assess how the curve changes conditional on specific stress scenarios [Bogin and Doerner,

2014], [Abdymomunov and Gerlach, 2014].

1.2 Yield Curve Models

Adequate yield curve models are core to the efficacy of interest rate stress testing frameworks.

We provide a brief overview of these models here, emphasizing approaches that have seen

particular use in stress testing applications. Early yield curve models can be traced to

the one-factor short-rate models of Vasicek [1977], Cox et al. [1981], and Cox et al. [1985].

Subsequent two-factor extensions include those of Hull and White [1990] and Longstaff and

Schwartz [1992]. Much of this work is unified in the general Heath-Jarrow-Morton (HJM)

framework [Heath et al., 1992]. There exists vast additional literature on these models and

their extensions; a comprehensive overview can be found in Brigo and Mercurio [2006].

Many yield curve models fit some data-adaptive functional form to an underlying yield

curve. Principal component analysis (PCA) based models are one prominent example of

such characterizations, as much of the variation in a sovereign yield curve can be attributed

to its first three principal components (PCs) [Litterman and Scheinkman, 1991], [Ang et al.,

2006]. PCA-styled representations make for natural models in stress testing applications,

as yield curve shocks can be constructed by directly stressing appropriate combinations of

PCs [Loretan, 1997]. Independent component analysis (ICA) has also been used to model
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yield curves for use in stress tests [Charpentier and Villa, 2010].

Other models fit yield curves using low-dimensional parametric structures. These models

include the three-factor Nelson-Siegel (NS) model [Nelson and Siegel, 1987], which describes

yield curves in terms of parameters representing their intrinsic level, slope, and curvature

(formally defined in section 2). The NS model has been extended on a number of occasions

to incorporate additional factors and satisfy no-arbitrage constraints [Svensson, 1994], [Björk

and Christensen, 1999], [Piazzesi and Cochrane, 2009]. A particularly notable extension is

the dynamic NS (DNS) model of Diebold and Li [2006] (and its augmented form in Diebold

et al. [2006]), which utilize time-varying parameters.

Yield curve models and associated stress testing frameworks discussed up to this point

are designed for application in a single-curve setting. That is, they offer a framework to

describe the behavior of a single yield curve, but they make an inherent simplification in

assuming no statistically significant correlation dynamics exist across collections of curves.

In practice, this assumption often does not hold; empirical evidence indicates the existence

of dependencies across different yield curves [Hendershott, 1967], [Engsted and Tanggaard,

2007]. This issue necessitates the development multiple-yield curve models specifically

designed to capture potentially time-evolving cross-curve dynamics.

Many multi-curve frameworks directly extend single-curve models to the multivariate setting

through inclusion of some predetermined coupling term. For example, Diebold et al. [2008]

directly extend the model of Diebold et al. [2006] to include global level and slope factors

shared across collections of yield curves. Similar approaches using exogenous coupling factors

are plentiful in recent literature [Hellerstein, 2011], [Bae and Kim, 2011], [Byrne et al.,

2019]. PCA-based single-curve representations have also been extended to the multi-curve

setting [Abbritti et al., 2013], [Gerhart and Lütkebohmert, 2020]. Other multi-curve models

directly model cross-curve covariance structures [Karimalis et al., 2017].
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1.3 Contributions and Novelty

In this work, we develop a multi-yield curve model generalizing the extended DNS of Diebold

and Li [2006] to collections of arbitrarily many yield curves through direct estimation of cross-

curve covariance dynamics. Unlike Karimalis et al. [2017], which estimates these dynamics

as a function of exogenous credit and liquidity variables, we model these dependencies as a

function of fully endogenous covariates derived directly from intrinsic relationships between

yield curves of interest. To do so, we develop a novel approach for feature extraction unlike

anything appearing in the literature to this point.

This structural shift represents a nontrivial departure from many existing multi-curve

models which directly encode cross-curve dependencies through external factors [Diebold

et al., 2008], [Bae and Kim, 2011]. Notably, our proposed methodology does not require any

analysis of linkages between exogenous global factors or macroeconomic fundamentals. The

model also differs from the multi-curve constructions developed by Sowmya et al. [2016]

and Cavaca and Meurer [2021], both of which begin by fitting a single-curve DNS model to

each curve (as is done here), but which take considerably different approaches to modeling

cross-curve covariance dynamics. Finally, we develop a formal stress testing and shock

evaluation framework amenable to our multi-curve model. This framework is rigorously

outlined, and an overview of different shock types and structures is provided.

1.4 Notation and Structure

The following notational conventions are employed throughout this work. Discrete univariate

time series are denoted by yt (occasionally xt) for t ∈ {t1, t2, · · · , tN} = T while multivariate

discrete time series are denoted by yt. Discrete-time univariate stochastic processes are

given by {Yt}t∈T with multivariate extensions {Yt}t∈T . Deterministic vectors and matrices

are indicated by boldface lowercase and capital letters respectively. Constant N -dimensional
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vectors and (N × K)-dimensional matrices with entries c ∈ R are given by cN and CN×K .

The (N × N) identity is denoted IN×N . Following standard convention, initial estimates

unobserved quantity x are indicated by x̂, and subsequent re-estimations of the same

quantity are given by x̃, x̆, x̌, and x̂ and introduced as needed.

The remainder of this work is organized as follows. Section 2 develops the core multi-curve

model structure underpinning this work. Specifics of model feature extraction are discussed

in section 3. All aspects of model estimation are given in section 4. Stress testing frameworks

are developed in section 5. A collection of yield curve data is introduced and used in a set

of numerical case studies in section 6. Concluding comments are provided in section 7.

2 Multi-Yield Curve Model

We now turn to the technical specification of our multi-curve model. The section begins by

introducing the foundational single-curve DNS model of Diebold and Li [2006], then follows

by extending it to a multi-curve setting through specification of cross-curve error dynamics.

2.1 Single-Curve Model

The DNS model of Diebold and Li [2006] extends the static NS model [Nelson and Siegel,

1987] to represent a single yield curve as a time-varying latent factor model. At arbitrary

time t ∈ T , let yi,t be the zero-coupon bond yield corresponding to sovereign yield curve i at

arbitrary tenor τj. The full sovereign yield curve corresponding to country i and observed

at time t is then denoted as yi,t(τ1:M) ∈ RM and given by the vector of observed yields

yi,t(τ1:M) = [yi,t(τ1), yi,t(τ2), · · · , yi,t(τM)]⊤ (2.1)

where tenors τj ∈ {τ1, τ2, · · · , τM} are ordered by increasing length. This collection of

yields is subsequently denoted in the shorthand yi,t. The DNS model describes tenor-
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specific components of yi,t using a parametric latent three-factor construction. For arbitrary

component yield yi,t(τj), the model takes the form

Yi,t(τj) = Li,t + Si,t

(
1 − e−λi,tτj

λi,tτj

)
+ Ci,t

(
1 − e−λi,tτj

λi,tτj

− e−λi,tτj

)
+ εi,t(τj) (2.2)

where εi,t(τj) is a random error term and Li,t, Si,t, and Ci,t are time-varying parameters

referred to as the level, slope, and curvature of the model. Nomenclature of these parameters

is derived from the impact of each factor on the curve at different τj. Level Li,t loads

on a constant and describes the baseline value of the yield curve. As τj increases, the

non-constant loadings on Si,t and Ci,t both decay to zero, representing the flattening of the

curve to the baseline at extreme long rates. The slope factor Si,t loads on an exponential

decay function and is thus highly influential on short-rate curve behavior, while curvature

Ci,t loads on a concave function which is most impactful on the medium-rate at which it is

maximized, but has little effect on extreme long- or short-rates.

The full yield curve is then represented by corresponding vector-valued DNS model

Y i,t(τ1:M) = [Yi,t(τ1), Yi,t(τ2), · · · , Yi,t(τM)]⊤ (2.3)

As in Diebold et al. [2006], the entire yield curve DNS representation Yi,t can be formulated

as a state-space-model (SSM) with latent parameter vector βi,t = (Li,t, Si,t, Ci,t)⊤ ∈ R3. Let

Φ(λi,t) ∈ RM×3 be the matrix of DNS factor loadings

Φ(λi,t) =


1 1−e−λi,tτ1

λi,tτ1
1−e−λi,tτ1

λi,tτ1
− e−λi,tτ1

... ... ...

1 1−e−λtτM

λi,tτM

1−e−λi,tτM

λi,tτM
− e−λi,tτM

 (2.4)

corresponding to shape parameter λi,t and subsequently denoted as Φi,t. Additionally,

let white noise error process εt(τ1:M) = [εt(τ1), εt(τ2), · · · , εt(τM)]⊤ ∈ RM correspond to

measurement errors made in fitting the DNS model. The single-curve DNS model can then
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be described in the state-space formulation
Yi,t(τ1)

...

Yi,t(τM)

 =


1 1−e−λi,tτ1

λi,tτ1
1−e−λi,tτ1

λi,tτ1
− e−λi,tτ1

... ... ...

1 1−e−λi,tτM

λi,tτM

1−e−λi,tτM

λi,tτM
− e−λi,tτM




Li,t

Si,t

Ci,t

+


εi,t(τ1)

...

εi,t(τM)

 (2.5)

This SSM can be simplified in compact matrix notation as

Yi,t(τ1:M) = Φi,tβi,t + εi,t(τ1:M) (2.6)

Hereafter, the reduced notations Yi,t and εi,t are used to represent Yi,t(τ1:M) and εi,t(τ1:M)

respectively. Latent factor vector βi,t is then modeled according to some predetermined

time series dynamics. Generally these dynamics are assumed to evolve as a VAR(p) process

taking the form

βi,t = µi +
L∑

l=1
ϑi,lβi,t−l + νi,t (2.7)

akin to the structure used in Diebold et al. [2006] and Karimalis et al. [2017]. Here

µi = (µLi
, µSi

, µCi
)⊤ is the process mean, ϑi,k ∈ R3×3 are constant coefficient matrices, and

transition errors are some arbitrary white noise process given by νi,t = (νLi,t, νSi,t, νCi,t)
⊤.

2.2 Single-Curve Covariance Structures

The joint covariance structure of measurement and transition errors in the DNS SSM

formulation described by equation (2.6) can be concretely specified. Following Diebold et al.

[2006], measurement errors εi,t and transition errors νi,t are assumed to jointly follow some

(M + 3)-dimensional white noise processνi,t

εi,t

 ∼ WN

0
0

 ,

Vi 0

0 Hi

 (2.8)

where Vi ∈ R3×3 and Hi ∈ RM×M are the covariance structures of νi,t and εi,t respectively.

Transition and measurement errors are assumed to be orthogonal to both one another and
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to the initial state βi,0. That is, for s, t, ∈ T , the processes satisfy

E
[
βi,0ε

⊤
i,t

]
= 0, E

[
βi,0ν

⊤
i,t

]
= 0, E

[
εi,tν

⊤
i,s

]
= 0 (2.9)

Many DNS formulations treat Hi as a diagonal matrix with measurement errors uncorrelated

across maturities. The assumption can, however, be relaxed; for example, Karimalis et al.

[2017] models country-specific Hi matrices using heterogeneous AR(1) component structures

while He et al. [2024] estimates Hi with both banded diagonal and non-diagonal formulations.

Here Hi is assumed to follow a pseudo block-diagonal structure with diagonal blocks

Σi,R, R ∈ {S, M, L} corresponding to correlations between short-rates, medium-rates, and

long-rates respectively and taking the form

Σi,R =


σ2

1 ρ1,2σ1σ2 · · · ρ1,mrσ1σmR

ρ2,1σ2σ1 σ2
2 · · · ρ2,mrσ2σmR

... ... . . . ...
ρmR,1σmR

σ1 ρmR,2σmR
σ2 · · · σ2

mR


i

(2.10)

where matrix subscript i indicates correlations specific to sovereign yield curve i, and where

each collection of σ1, · · · , σmR
and ρn,m is unique to the block Σi,R. This matrix will also

contain four off-block-diagonal terms ρRR′σRσR′ , R, R′ ∈ {S, M, L} coupling the short-rate

and medium-rate blocks and coupling the medium-rate and long-rate blocks. The full

covariance matrix Hi can then be written as

Hi =



Σi,S

0 0 · · · 0
... ... . . . ...
0 0 · · · 0

ρSMσSσM 0 · · · 0

0SL

0 · · · 0 ρMSσMσS

0 · · · 0 0
... . . . ... ...
0 · · · 0 0

Σi,M

0 0 · · · 0
... ... . . . ...
0 0 · · · 0

ρMLσMσL 0 · · · 0

0LS

0 · · · 0 ρLMσLσM

0 · · · 0 0
... . . . ... ...
0 · · · 0 0

Σi,L


i

(2.11)

9



where again subscript i indicates correlations specific to curve i and where off-block diagonal

entries 0LS and 0SL are zero matrices of appropriate dimension. Transition error covariance

matrix Vi is allowed to be fully non-diagonal.

2.3 Multi-Curve DNS Extension

The single-curve DNS model given in section 2.1 can be directly extended to incorporate

arbitrarily many different yield curves. Let Yt(τ1:M) ∈ RM×D be the set of yields at M

common tenors across D sovereign yield curves y1,t, y2,t, · · · , yD,t and defined as

Yt(τ1:M) =
[
y1,t : y2,t : · · · : yD,t

]
=


y1,t(τ1) · · · yD,t(τ1)

... . . . ...
y1,t(τM) · · · yD,t(τM)

 (2.12)

This multi-curve matrix is subsequently denoted by Yt. Furthermore, let Ỹt = vec(Yt)

be the embedding of Yt into an MD-dimensional column vector. Letting βi,t and Φi,t

be single-curve latent parameter vectors and loading matrices for each curve i as defined

in equation (2.6), the multi-curve loading matrix Φt ∈ RMD×3D and multi-curve latent

parameter vector βt ∈ R3D are defined as

Φt =
(
Φ⊤

1,t : Φ⊤
2,t : · · · : Φ⊤

D,t

)⊤
, βt = vec

(
β1,t : β2,t : · · · : βD,t

)
(2.13)

Using parameters of the form of Φt and βt in equation (2.13), a multi-curve DNS structure

simultaneously modeling the D yield curves of interest can be defined in compact form as

Ỹt = Φtβt + ξt (2.14)

where ξt ∈ RD is a vector containing the potentially correlated set of cross-curve DNS

measurement errors. It is assumed that each latent parameter vector βi,t comprising βt is

driven by individual VAR(p) dynamics in the form of equation (2.7) with transition errors

νi,t orthogonal across different curves. To define an appropriate cross-curve dependency
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structure, measurement errors ξt are assumed to admit an additive decomposition of form

ξt =



ξ1,t(τ1)
...

ξ1,t(τM)
...

ξD,t(τ1)
...

ξD,t(τM)


=



ε1,t(τ1)
...

ε1,t(τM)
...

εD,t(τ1)
...

εD,t(τM)


︸ ︷︷ ︸

within-curve

+



ζ1,t(τ1)
...

ζ1,t(τM)
...

ζD,t(τ1)
...

ζD,t(τM)


︸ ︷︷ ︸

within-tenor

= εt + ζt (2.15)

In this decomposition, εt captures the within-curve, cross-tenor measurement error terms

defined for the single-curve framework in subsection 2.1, and ζt captures cross-curve,

within-tenor errors. In the interest of model parsimony, we assume simultaneous cross-

curve and cross-tenor errors are of negligible effect relative to εt and ζt. Let εi,t be

the within-curve errors corresponding to curve i as defined in subsection 2.1 and define

ζj,t = [ζ1,t(τj), · · · , ζD,t(τj)]⊤ ∈ RD as the vector of ζi,t(τj) components corresponding to

tenor τj. These error processes are assumed to satisfy the dynamics

E
[
εi,tε

⊤
k,t

]
= 0 ∀i ̸= k, E

[
ζj,tζ

⊤
k,t

]
= 0 ∀j ̸= k (2.16)

Additionally, all εt and ζt components are assumed to be uncorrelated in the sense that

E [εi,t(τj)ζi,t(τj)] = 0, ∀i, j. Finally, both εi,t and ζj,t are assumed to follow multivariate

Gaussian distributions of the form

εi,t ∼ MVN (0, Hi,t) , ζj,t ∼ MVN (0,Σj,t) (2.17)

where Hi,t captures the within-curve covariance structure for curve i and is in the form

of (2.11), and Σj,t are non-diagonal matrices accounting for cross-curve covariances at

tenor τj. Unlike the static covariance structure in equation (2.8), both Hi,t and Σj,t are

explicitly allowed to vary with time. This shift allows for significant flexibility in modeling

time-dependent structural changes in cross-curve dynamics.
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Multi-curve covariances for the full collections of within-curve and cross-curve errors are

then given by direct sums Ht = ⊕D
i=1 Hi,t and Σt = ⊕M

j=1 Σj,t respectively. It follows that
(

ε1,t(τ1) · · · ε1,t(τM) · · · εD,t(τ1) · · · εD,t(τM)
)⊤

∼ MVN (0, Ht)(
ζ1,t(τ1) · · · ζD,t(τ1) · · · ζ1,t(τM) · · · ζD,t(τM)

)⊤
∼ MVN (0,Σt)

(2.18)

where the vector of ζi,t(τj) errors in equation (2.18) is the permutation of ζt grouping

components by maturity rather than country.

2.4 Covariance Regression

To model the time-varying cross-curve covariance structures Σj,t, we adopt the covariance

regression framework developed by Hoff and Niu [2012] and extended by van Jaarsveldt

et al. [2024]. This approach models the conditional covariance of some multivariate residual

process as a quadratic function of input covariates, and offers significant flexibility over

static covariance formulations. Define the multivariate residual wt in the form

wt = Ỹt − Φtβt (2.19)

where Ỹt, Φt, and βt are as defined in equation (2.14) for t ∈ T . Additionally, let x̃1,t ∈ Rq1

and x̃2,t ∈ Rq2 be predetermined input covariates describing the respective mean and

covariance structures of wt. Let Ai and Bj be coefficients associated with each set of lagged

coefficient vectors x̃1,t−i and x̃2,t−j respectively. Defining processes {γt}t∈T with γt ∈ R and

{ϵt}t∈T with ϵt ∈ Rp as respective collections of latent uncorrelated random effects and

cross-correlated errors, wt admits a random-effects model representation as

wt =
l1∑

i=0
Aix̃1,t−i + γt ×

l2∑
j=0

Bjx̃2,t−j + ϵt

= Ax1,t + γt × Bx2,t + ϵt

(2.20)

where lagged covariate vectors are stacked to form x1,t ∈ RQ1 and x2,t ∈ RQ2 and lagged

coefficient matrices are combined into matrices A ∈ RP ×Q1 and B ∈ RP ×Q2 with Q1 =
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q1(l1 + 1) and Q2 = q2(l2 + 1). Concretely, the compact notation in equation (2.20) defines

xk,t = vec
(

x̃⊤
k,t : x̃⊤

k,t−1 : · · · : x̃⊤
k,t−lk

)⊤

A =
(

A0 : A1 : · · · : Al1

)

B =
(

B0 : B1 : · · · : Bl2

)
(2.21)

for k ∈ {1, 2}. To allow for model calibration and parameter identification, processes {γt}t∈T

and {ϵt}t∈T are assumed to satisfy the first and second moment conditions

E [ϵt] = 0, Cov [ϵt] = Ψ, E [γt] = 0, Var [γt] = 1, E [γt × ϵt] = 0 (2.22)

where Ψ is a p × p positive-definite matrix representing the baseline covariance across all

cross-correlated errors, and the first moment of wt conditional on covariates x1,t and x2,t is

E [wt|xt1 , xt2 ] = Ax1,t = µx1,t (2.23)

In this framework, the conditional covariance of wt given x1,t and x2,t can be computed as

E
[
(wt − µx1,t)(wt − µx1,t)⊤|x1,t, x2,t

]
= Bx2,tx⊤

2,tB⊤ + Ψ

= Σwt|xt

(2.24)

This approach can also be used to estimate the covariance associated with a particular subset

of residuals by substituting some truncated or otherwise reduced form residual vector in

place of wt in equation (2.24). This generalization allows for estimation of the tenor-specific

covariances outlined in subsection 2.3. Concretely, let wj,t be the partial residual vector

wj,t = [w1,t(τj), w2,t(τj), · · · , wD,t(τj)]⊤ (2.25)

where each wi,t(τj) is the component of wt corresponding to the residual of curve i at tenor

τj. Fitting a separate covariance regression model to each wj,t then yields tenor-specific

conditional covariance matrices Σwj,t|xt .
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3 Feature Extraction

Effective use of the covariance regression model described in subsection 2.4 requires careful

construction of regression covariates xk,t and x2,t. In characterizing cross-yield curve

covariance structures; we elect to construct covariates based on endogenous stochastic

dynamics across curves’ intrinsic level, slope, and curvature parameters.

3.1 Cointegration and Error Correction

This section introduces the notion of cointegration and the representation of cointegrated

VARs as error correction models (ECMs). This representation is used to extract covariates

for use as inputs in the covariance regression model. Let Zt be the VAR(p) process

Zt = (z1,t, · · · , zK,t)⊤ = ϕ1Zt−1 + · · · + ϕpZt−p + ηt (3.1)

where zi,t are univariate component series, ϕi ∈ RK×K are arbitrary constant matrices, and

ηt ∈ RK are some i.i.d. white noise error process. Each univariate component series zi,t is

said to be integrated of order k, denoted I(k), when its characteristic polynomial contains

k unit roots. Series Zt is cointegrated of order (k, r), denoted CI(k, r) if there exists some

I(k − r) linear combination of its univariate components. These linear combinations can be

described via the set of linearly independent cointegration vectors g1, g2, · · · , gr such that

giZt ∼ I(k − r). Engle and Granger [1987] show that CI(1, 1) processes have equivalent

representations as ECMs in the form

∆Zt = ΠZt−1 +
p−1∑
i=1
ϕ̃i∆Zt−i +ψDt + ηt (3.2)

where Dt ∈ RK×K is a deterministic process scaled by constant ψ ∈ RK×K , ηt ∼

MVN (0,Ω) are i.i.d. Gaussian noise, and the (K × K) real matrices Π and ϕ̃i are

defined in terms of the coefficients of Zt as

Π = −(IN − ϕ1 − · · · − ϕp), ϕ̃i = −(ϕi+1 + · · · + ϕp) (3.3)
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When Zt is of known cointegration rank r, Π admits a rank decomposition Π = FG⊤

with F, G ∈ RK×r and r = rank(Π) = rank(F) = rank(G). G is referred to as the

cointegration matrix and its columns gi are r linearly independent cointegration vectors

describing cointegration relationships between components of Zt. The reversion or loading

matrix F describes the rate at which components of Zt return to equilibrium if perturbed.

The rank decomposition of Π is not unique; matrices F and G can be arbitrarily transformed

through multiplication by any invertible matrix U ∈ Rr×r since

Π = FG = F(U−1)⊤U⊤G⊤ = F∗(G∗)⊤ (3.4)

Performing a rank decomposition of Π = FG⊤ such that the first r rows of G form a

full-rank matrix with inverse U, equation (3.4) generates cointegration vectors based on

G∗ =
(

Ir×r G⊤
LU⊤

)⊤
, where GL is the (N − r) × r lower block of G. All subsequent

references to cointegration and loading matrices correspond to the normalized F∗ and G∗.

3.2 Cross-Curve Cointegration

Cointegration dynamics can be defined across VAR series formed by concatenating DNS

parameters representing two different yield curves. Consider yield curves i and l with DNS

parameters βi,t = (Li,t, Si,t, Ci,t) and βl,t = (Ll,t, Sl,t, Cl,t) and i ̸= l. Define the VAR(p)

series Zil,t following dynamics as in equation (3.1) by

Zil,t = (Li,t, Si,t, Ci,t, Ll,t, Sl,t, Cl,t)⊤ (3.5)

Assuming I(1) univariate component processes, Zil,t admits an ECM representation as in

equation (3.2) with rank ril cointegration matrix Gil. Denote columns of Gil by gk ∈ R6,
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k ∈ {1, 2, · · · , ril}. Gil can then be written

Gil =
(
g1 : g2 : · · · gr

)
=



g1,1,i g1,2,i · · · g1,r,i

g2,1,i g2,2,i · · · g2,r,i

g3,1,i g3,2,i · · · g3,r,i

g1,1,l g1,2,l · · · g1,r,l

g2,1,l g2,2,l · · · g2,r,l

g3,1,l g3,2,l · · · g3,r,l


=
Gi

Gl

 (3.6)

omitting subscripts from ril for notational convenience. Matrices Gi, Gl ∈ R3×r serve to

partition Gil into upper and lower blocks corresponding to cointegration vector coefficients

for curve i and l parameters respectively. These matrices take the form

Gi =


g1,1,i g1,2,i · · · g1,r,i

g2,1,i g2,2,i · · · g2,r,i

g3,1,i g3,2,i · · · g3,r,i

 , Gl =


g1,1,l g1,2,l · · · g1,r,l

g2,1,l g2,2,l · · · g2,r,l

g3,1,l g3,2,l · · · g3,r,l

 (3.7)

We extend this formulation to define cointegration relations between a single reference curve

and a collection of (D − 1) marginal curves. Without loss of generality, the reference curve

is denoted curve 1 while the remaining marginal curves are indicated by l ∈ {2, 3, · · · , D}.

For each marginal curve l, let Z1l,t be the VAR(p) series containing DNS parameters for

curves 1 and l as in equation (3.5). Additionally, let G1l be the ECM representation

cointegration matrices corresponding to each Z1l,t such that G1l =
(

G̃⊤
l G⊤

l

)
where G̃l

and Gl are partitioned blocks in the form of Gi and Gl in equation (3.7), and define

cumulative cointegration rank R = r12 + r13 + · · · + r1D. The full set of cointegration

relations between reference curve 1 and the remaining D − 1 curves is described by the

cumulative cointegration matrix G̃ with upper block GU and lower block GL given by

GU =
(

G̃2 : G̃3 : · · · : G̃D

)
, GL =

D⊕
l=2

Gl (3.8)

such that G̃⊤ =
(

G⊤
U G⊤

L

)
. Cumulative cointegration matrix G̃ is identical to the full

cointegration matrix generated by an ECM representation of the 3D-dimensional VAR(p)

process made up of DNS parameter series for all D curves of interest under the constraint

that no cross-curve cointegration exists between pairs of marginal curves.
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3.3 Cointegration Spreads

The cross-curve cointegration models developed in subsection 3.2 can be used to extract

feature series usable as inputs to the covariance regression model of subsection 2.4. To

construct these features, we first develop the notion of cointegration spreads. Given either

a collection of cross-curve cointegration matrices Gil or cumulative cointegration matrix G̃,

the kth cointegration spread xil,k,t between curves i and l is the series

xil,k,t = gkZ
⊤
il,t = g1,iLi,t + g2,iSi,t + g3,iCi,t + g1,lLl,t + g2,lSl,t + g3,lCl,t (3.9)

for k ∈ {1, 2, · · · , ril}. For notational convenience, subsequent notation suppresses subscripts

on cointegration rank and denotes r := ril. Cointegration spreads xil,t ∈ Rr may then be

constructed between any arbitrary pair of curves i and l and are defined as

xil,t = (xil,1,t, · · · , xil,r,t)⊤ (3.10)

Setting curve 1 to be the reference curve as outlined in section 3.2, univariate cointegration

spread series comprising each cointegration spread vector x1l,t are obtained by extracting

columns of cross-curve cointegration matrices G1l. Finally, define xt ∈ RR as the cumulative

cross-curve cointegration spread vector

xt = vec
(
x12,t : x13,t : · · · x1D,t

)
(3.11)

which is then assigned VAR(p) dynamics of the form

xt = ϕ1xt−1 + · · · + ϕpxt−p + ηt (3.12)

where ηt is some white-noise error process with non-diagonal covariance. xt can then be

used as the input covariate to the covariance regression model of subsection 2.4.

In practice, correlations across the component series within each cointegration spread xil,t

are often quite significant. These correlations can lead to unstable estimation of cross-curve
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dynamics when raw cointegration spreads are used as covariance regression inputs. To

remedy this issue, it is often useful to consider a reduced cross-curve cointegration spread

x̃t = (x12,t, x13,t, · · · , x1D,t)⊤ (3.13)

where components x1l,t are selected as the fastest-reverting components (defined by corre-

sponding reversion rate matrix Fil) of full cross-curve cointegration spreads xil,t.

4 Model Estimation

Here we describe the estimation process for the multi-curve model developed in section 2.

Let Yt ∈ RM×D be the matrix of D sovereign yield curves observed at times t ∈ T across

all tenors τj as in equation (2.12). The cross-curve covariance structure and cross-curve

variance-stabilized yields are obtained via the following multi-stage process.

Stage I: Individually fit the single-curve DNS model to each yield curve yi,t to obtain DNS

curve estimates ŷi,t generated using parameter estimates

β̂i,t =
(
L̂i,t, Ŝi,t, Ĉi,t

)⊤
(4.1)

alongside curve-specific shape estimates λ̂i,t. Aggregate these curve estimates into matrix

Ŷt ∈ RM×D in the form of equation (2.12), and denote by Ỹt = vec(Ŷt) ∈ RMD the

vectorized matrix of curve estimates

Ỹt = vec(Ŷt) = Φ̂tβ̂t (4.2)

where Φ̂t ∈ RMD×3 and β̂i,t are the respective multi-curve loadings matrix and loadings

Φ̂t =
(
Φ̂⊤

1,t : Φ̂⊤
2,t : · · · : Φ̂⊤

D,t

)⊤
, β̂t = vec

(
β̂1,t : β̂2,t : · · · : β̂D,t

)
(4.3)

and each Φ̂i,t is the loadings matrix for curve i and estimated shape parameter λ̂i,t.
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Stage II: Compute the full vector of residuals wt at each time step as

wt = vec (Yt) − Ỹt (4.4)

and denote curve- and tenor-specific partitioned residuals by wi,·,t and w·,j,t respectively.

Compute within-curve covariance matrices Hi,t in the pseudo-block diagonal form of equation

(2.11) as the stratified empirical covariances of curve-specific residual vectors wi,·,t.

Stage III: Using curve-specific β̂i,t extracted in stage I, fit VAR(p) series Z1l,t in the form

of equation (3.5) between the predetermined reference curve 1 and remaining curves l ∈

{2, 3, · · · , D}. Estimate corresponding ECM representations and reversion and cointegration

matrices F1l and G1l for each Z1l,t. Extract cointegration spreads x1l,t corresponding to each

G1l,t. Stack these spread vectors into a cumulative cointegration spread xt as in equation

(3.11) or reduced cointegration spread x̃t as in equation (3.13). Without loss of generality,

both spread processes are indicated by xt hereafter.

Stage IV: Estimate the error covariance structure Σ̂j,t = Ψ̂j + B̂jxtx⊤
t B̂⊤

j corresponding

to each tenor-specific residual w·,j,t extracted in stage II using the covariance regression

model of subsection 2.4 with cointegration spread process xt as regression input covariates.

Stage V: Define P as the permutation matrix where transformation PỸt =
∗
Yt groups

elements of Ỹt by maturity. That is, P permutes the entries of Ỹt as

PỸt = P



ŷ1,t(τ1)
...

ŷ1,t(τM)
...

ŷD,t(τ1)
...

ŷD,t(τM)


=



ŷ1,t(τ1)
...

ŷD,t(τ1)
...

ŷ1,t(τM)
...

ŷD,t(τM)


=

∗
Yt (4.5)

Next, construct full within-curve and cross-curve covariance matrices

Ĥt =
D⊕

i=1
Ĥi,t Σ̂t =

M⊕
j=1

Σ̂j,t (4.6)
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where Ĥi,t and Σ̂j,t are the within-curve and within-tenor covariance matrices estimated in

stage II. Pre-multiply
∗
Yt by Σ̂

−1/2
t to transform the estimated covariance structures Ĥt of

within-curve errors εt and estimated covariance structures Σ̂t of cross-curve errors ζt to

H̆t = Σ̂
−1/2
t PĤtP⊤(Σ̂−1/2

t )⊤ Σ̆t = Σ̂
−1/2
t PP⊤Σ̂tPP⊤(Σ̂−1/2

t )⊤ = ID×D (4.7)

and denote by Y̆t = Σ̂
−1/2
t

∗
Yt the variance-stabilized

∗
Yt. Also compute permuted and

variance-stabilized DNS factor loadings Φ̆t = Σ̂
−1/2
t PΦ̂t.

Stage VI: Reorder Y̆t and Φ̆t into curve-specific groupings by multiplying each by trans-

posed permutation matrix P⊤. This transformation yields Y̌t = P⊤Y̆t and Φ̌t = P⊤Φ̆t.

Within-curve errors corresponding to Y̌t then have covariance structure

Ȟt = P⊤Σ̂
−1/2
t PĤtP⊤(Σ̂−1/2

t )⊤P (4.8)

In this construction, Φ̌t is the matrix of stacked curve-specific factor loadings

Φ̌t =
(
Φ̌⊤

1,t : Φ̌⊤
2,t : · · · : Φ̌⊤

D,t

)⊤
(4.9)

where each Φ̌i,t is the matrix of transformed factor loadings corresponding to curve i,

and Ȟt is the block diagonal matrix Ȟt = ⊕D
i=1 Ȟi,t such that each Ȟi,t is the M × M

variance-stabilized within-curve covariance matrix corresponding to curve i. For each

i ∈ {1, 2, · · · , D}, extract components (M(i − 1) + 1) through Mi from Y̌t to obtain D

vectors of the form

y̌i,t = [y̌i,t(τ1), y̌i,t(τ2), · · · y̌i,t(τM)]⊤ (4.10)

containing curve-specific transformed yields. Individually estimate transformed DNS pa-

rameters β̌i,t = (Ľi,t, Ši,t, Či,t)⊤ for each curve i using curve-specific factor loadings Φ̌i,t.

Stage VII: Calculate estimated cross-curve variance-stabilized yields y̌∗
i,t for each curve i as

y̌∗
i,t(τ1:M) = Φ̌i,tβ̌i,t (4.11)
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and aggregate these yields into a matrix of variance-transformed yield estimates as

Y̌∗
t =

(
y̌∗

1,t(τ1:M) : y̌∗
2,t(τ1:M) : · · · : y̌∗

D,t(τ1:M)
)

(4.12)

Define corresponding MD-dimensional embedding vector Ỹ∗
t = vec(Y̌∗

t ).

Stage VIII: Transform the predicted yields back to their original scale by reordering

components of Ỹ∗
t by maturity and multiplying by Σ̂t. That is, compute Ŷ∗

t given by

Σ̂
1/2
t PỸ∗

t = Σ̂
1/2
t P



y̌∗
1,t(τ1)

...
y̌∗

1,t(τM)
...

y̌∗
D,t(τ1)

...
y̌∗

D,t(τM)


=



ŷ∗
1,t(τ1)

...
ŷ∗

D,t(τ1)
...

ŷ∗
1,t(τM)

...
ŷ∗

D,t(τM)


= Ŷ∗

t (4.13)

The resulting Ŷ∗
t vector describes the term structure across all D yield curves accounting

for cross-curve correlations between the reference and marginal curves.

Three separate parameter estimation steps are performed in this process. DNS latent factors

are estimated in stages I and VI, cointegration dynamics are estimated in stage III, and the

cross-curve covariance structure is estimated in stage IV. Approaches to estimating these

quantities are well-documented in the literature [Johansen, 1988], [Diebold and Li, 2006],

[Hoff and Niu, 2012] and are omitted here for brevity; descriptions appear in appendix A.

5 Stress Testing

The multi-curve model and associated estimation process outlined in sections 2 - 4 are

well-suited for use in cross-curve stress tests. Given a set of observed yield curves

y1,t, y2,t, · · · , yD,t, a general stress testing procedure is performed as follows:

Baseline Estimation: Run stages I - VIII of the cross-curve estimation given in section 4

using the observed yields as inputs. This estimation results in curve estimates Ŷ∗
t , DNS
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parameter estimates β̂i,t, and estimated covariances Σ̂t. Estimated cointegration matrices

Ĝ1l, covariance regression parameters B̂j and Ψ̂j, and residuals wt are also obtained.

Stress Testing: Define shock process S = {∆t}t∈T , where ∆t ∈ R3×D are disturbance

matrices taking the general form

∆t =
(
δ1,t : δ2,t : · · · : δD,t

)
(5.1)

with curve-specific shock vectors δi,t ∈ R3 containing specific disturbances corresponding to

DNS parameters of curve i at time t and defined by

δi,t =
(
δL

i,t, δS
i,t, δC

i,t

)⊤
(5.2)

Here superscripts indicate disturbances to level, slope, and curvature respectively. Let

β̃t ∈ R3×D be the matrix containing the full collection of baseline DNS parameter estimates

β̃t =
(
β̂1,t : β̂2,t : · · · β̂D,t

)
(5.3)

Apply the set of shocks S to β̃t to construct a time series of shocked DNS parameter

estimates. These shocked parameter estimates can be generated either by linear translation

or scalar shifts in the original DNS parameter estimates as

β̃s,+
t = β̃t + ∆t, β̃s,×

t = β̃t ⊙ ∆t (5.4)

Shocked DNS parameter estimates corresponding to curve i are denoted β̂s
i,t and can then be

extracted as the ith column of β̃s
t . Using these shocked DNS parameter estimates, complete

stage I of the baseline cross-curve estimation by constructing the collection of shocked

curves ŷs
i,t corresponding to each curve’s shocked DNS parameters β̂s

i,t, and computing

shocked residuals ws
i,t = (yi,t − ŷs

i,t) and shocked within-curve covariance matrix estimates

Ĥs
i,t. Perform stages II - VI of the baseline cross-curve estimation process to obtain shocked

curve estimates Ŷs
t and shocked covariance structure estimate Σ̂s

t . Shocked cointegration

and reversion matrices Ĝs
1l and F̂il, shocked covariance regression parameters B̂s

j and Ψ̂s
j ,

and shocked residuals ws
t can also be obtained. This procedure is visualized in figure 1.
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Figure 1: Combined multi-curve estimation and stress testing methodology. Upper panel
shows baseline estimation process and outputs while lower panel shows the shock application
and estimation process. Conditional testing quantities can be extracted in both baseline
and shocked curve estimation.

5.1 Shock Structures

The stress testing approach shown in figure 1 can incorporate a wide array of different

shock structures. These shock types may be stratified by target curve as reference curve

shocks or marginal shocks. They may also be stratified by duration as permanent shocks,

transient shocks, and cascade shocks (shocks across gradually spreading different curves).

Brief descriptions of these shock types are given here.

Reference shock: disturbance process {∆reference
t }t∈T applies scalar or additive shifts

of potentially time-varying magnitudes to the reference curve (presented without loss of

generality as curve i = 1) only. These shocks take the forms

∆reference,×
t =

(
δ1,t : 13 : · · · : 13

)
∆reference,+

t =
(
δ1,t : 03 : · · · : 03

) (5.5)
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Marginal shock: disturbance process {∆marginal
t } applies scalar or additive shifts of

potentially time-varying magnitudes to some collection of marginal curves (presented

without loss of generality as curves i ∈ {2, 3, · · · , D}). These shocks are of form

∆marginal,×
t =

(
13 : δ2,t : · · · : δd,t

)
∆marginal,+

t =
(
03 : δ2,t : · · · : δd,t

) (5.6)

Note that this shock may be applied to either a single marginal curve or to some arbitrary

collection of marginal curves as shown.

Permanent shock: disturbance process {∆permanent
t }t∈T applies a constant linear scaling

or transformation to the entire collection of baseline DNS parameter estimates over all

t ∈ T . Permanent shocks take the form

∆permanent,×,+
t =

(
δ1 : δ2 : · · · : δD

)
(5.7)

Transient shock: the transient shock {∆transient
t }t∈T consists of a constant shock applied

over some set of times t ∈ [t1, tc] before dissipating. Cutoff time tc may be arbitrarily

defined, and need not be a time tk at which data is observed. Generic scalar and additive

transient shocks take the form

∆transient,×
t =

(
δ1 : δ2 : · · · : δD

)
I(t ≤ tc) + 1(3×D)I(t > tc)

∆transient,+
t =

(
δ1,t : δ2,t : · · · : δD,t

)
I(t ≤ tc)

(5.8)

Transient shocks may be further modified to operate over some arbitrary time window

between start tc,1 and cutoff tc,2 by modifying the characterizations in equation (5.8) to use

indicators I(tc,1 ≤ t ≤ tc,2).

Cascade shock: the cascade or iterated shock process {∆cascade
t }t∈T consists of a shock

that progressively expands over time to stress multiple curves. Scalar and additive cascades
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can be written as

∆cascade,×
t =

(
δ1I(t > tc1) : δ2I(t > tc2) : · · · : δDI(t > tcD

)
)

+
(
13I(t ≤ tc1) : 13I(t ≤ tc2) : · · · : 13I(t ≤ tcD

)
)

∆cascade,+
t =

(
δ1I(t > tc1) : δ2I(t > tc2) : · · · : δDI(t > tcD

)
)

(5.9)

The cascade shock may originate at any curve; cutoff times tci
in the additive and scalar

cascade shock formulations in equation (5.9) use subscript ci to denote curve number rather

than any temporal ordering.

Shock types described up to this point may be combined to construct a variety of hybrid

shock structures (e.g., combined permanent reference and transient hybrid shocks). It is

also possible to to define shocks based on disturbance processes {∆t}t∈T with columns of

arbitrary time-varying shock vectors {δi,t}t∈T containing, for example, exponential decay or

oscillatory behavior. It is also possible to condition shocked curve estimation on quantities

generated during baseline estimation stages. These quantities include baseline cross-curve

cointegration matrix Ĝ = ⊕D
l=2 Ĝ1l, covariance regression parameter estimates B̂j and Ψ̂j,

and residuals wt obtained in baseline cross-curve estimation. Further description of the

resulting conditional tests is provided in appendix D.

5.2 Shock Evaluation

Application of the stress testing methodology described in subsection 5.1 generates several

quantities of interest in making comparisons between different shocked multi-curve systems.

To describe these quantities, we first note that variance-normalized cross-curve yields Ysk
t

constructed through application of shocks sk, k ∈ {1, 2} are distributed as

Ysk
t ∼ DMD (µsk

t ,Σsk
t ) (5.10)

such that DMD is an arbitrary MD-dimensional distribution and the full set of shocked

yields is an MD-dimensional vector with M - and D-dimensional curve- and tenor-specific

25



sub-vectors Ysk
i,·,t and Ysk

·,j,t respectively. Likewise, curve- and tenor-specific shocked variance-

stabilized yields ysk
i,j,t are assumed to follow distributions

ysk
i,j,t ∼ D

(
µsk

i,j,t, (σsk
i,j,t)2

)
(5.11)

All DMD and D CDFs are given by F sk(Yt) and F sk(yi,j,t) respectively. Also of interest are

cross-curve and cross-tenor spreads. These can be vector-valued quantities of form

κsk
ii′,·,t =

[
Ysk

i,·,t − Ysk
i′,·,t

]⊤
∼ KM

(
µsk

ii′,·,t,Σ
sk
ii′,·,t

)
κsk

·,jj′,t =
[
Ysk

·,j,t − Ysk
·,j′,t

]⊤
∼ KD

(
µsk

·,jj′,t,Σ
sk
·,jj′,t

) (5.12)

or univariate simultaneous cross-curve and cross-tenor spreads

κsk
ii′,jj′,t =

[
ysk

i,j,t − ysk
i′,j′,t

]
∼ K

(
µsk

ii′,jj′,t, (σsk
ii′,jj′,t)2

)
(5.13)

Here KM , KD, and K refer to arbitrary M -, D-, and 1-dimensional distributions with

corresponding CDFs F sk
κ (κt) and F sk

κ (κt). These quantities can be directly evaluated

through the set of tests shown in table 1. Additional details on test implementation are

provided in supplemental appendix C.

Univariate Tests
Test Null Alternative
Two-sample Student’s t-test µs1

i,j,t = µs2
i,j,t µs1

i,j,t ̸= µs2
i,j,t

Kolmogorov-Smirnov test F s1(yi,j,t) dist= F s2(yi,j,t) F s1(yi,j,t)
dist
̸= F s2(yi,j,t)

Cramér-von Mises test F s1(yi,j,t) dist= F s2(yi,j,t) F s1(yi,j,t)
dist
̸= F s2(yi,j,t)

Multivariate Tests
Test Null Alternative
Two-sample Hotelling’s T-square test µs1

t = µs2
t µs1

t ̸= µs2
t

Two-sample covariance matrix test Σs1
t = Σs2

t Σs1
t ̸= Σs2

t

Copula-based comparisons Cs1 dist= Cs2 Cs1
dist
̸= Cs2

Table 1: Shock comparison tests. Univariate tests may replace µsk
i,j,t with spread means µ·,·,t

or spread CDFs F sk
κ where appropriate. Multivariate tests may replace µsk

t or Σsk
t with

curve-, tenor-, or spread-specific µsk
·,·,t and Σsk

·,·,t . Arbitrary copula are denoted Csk .
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6 Applications

This section describes numerical studies analyzing real sovereign yield data using our multi-

curve model and stress testing framework.1 These studies use daily zero-coupon-bond yield

data from the United States (USA), United Kingdom (GBR), Japan (JPN), Canada(CAD),

Germany (GER), France (FRA), Italy (ITL), and Australia (AUS). Data is obtained from

TradingView (https://www.tradingview.com/). Bond yields are observed at 1 - 360 month

tenors from January 2007 through January 2024. This data is summarized in table 2.

Country 1M 3M 6M 12M 24M 60M 84M 120M 240M 360M
USA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GBR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JPN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CAD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FRA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ITL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AUS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Collected yield curve maturities by country. Blue checks indicate that data is
available at the given tenor for the entire period from January 2007 - January 2024. Red
checks indicate that yield data at the specified tenor is missing for large portions (at least
one year of approximately 250 consecutive trading days) of the period.

For each sovereign yield curve, missing yields are bootstrapped by first generating sporadic

single-day missing yields via cubic-spline interpolation, then fitting a static NS model to each

day to generate yields at missing tenors. For ITL and AUS yield curves where short-rate

data is limited, monthly overnight and 90-day interbank rates obtained from the Federal

Reserve Economic Data (FRED) database (https://fred.stlouisfed.org/) are substituted for

short-rates in the static NS fits to avoid numerical issues. The reconstructed USA yield

curve is shown in figure 2.
1Associated code and data are available in the R notebooks at https://github.com/isaiahkatzt/multicurve.
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(a) USA Observed Yields (b) USA Bootstrapped Yields

Figure 2: USA yield surface comparison. As shown in (a), no 20-year yield is observed over
the period spanning January 1, 2007 - May 20, 2020. Reconstructed yields in (b) use static
NS estimation to fill in 20-year yield estimates over the missing period, before interpolating
across yields to produce a surface.

6.1 Shocked Curve Applications

We consider a set of applications comparing shocked yields to cross-curve variance stabilized

baseline yields obtained as outlined in section 4. These variance stabilized baseline yields

are estimated over each static annual window from January 2012 - December 2018. Periods

from 2007 - 2011 and 2019 - 2023 are omitted due to pre-existing stress effects stemming

from the 2008 financial crisis and 2020 COVID-19 pandemic respectively. In all cases, the

USA curve is treated as reference (without loss of generality, i = 1). Detailed description of

the baseline estimation process appears in appendix E.2.

In the first set of numerical studies, permanent shocks are separately applied to the USA

and JPN yield curves. These shocks correspond to the 99.9th percentile daily change in

observed USA and JPN yields respectively. In a second set of numerical studies, a set

of progressively increasing shocks are separately applied the USA and JPN yield curves.

Shocks begin at the 95th percentile daily change in observed curve yields, then linearly

increase each week until the USA curve has achieved a 200 basis point (BPS) upward shift

and the JPN curve has achieved a 100 BPS upward shift; these values are selected to align
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with the stress testing guidelines in BCBS [2016]. In both sets of experiments, shocks are

applied beginning on the first trading day of each year. Effects of these shocks on daily

volatility of the USA, GBR, JPN, and CAD yield curves are visualized in figures 3 and 4.

Additional numerical studies and further details on the implementation and results of these

applications applications appear in appendices E and F.

Figure 3: Daily yield changes for baseline cross-curve stabilized yields and cross-curve
yields after application of 99.9th percentile daily shocks to respective USA and JPN curves.
USA-99P and JPN-99P shocks correspond to shocks of magnitude equal to the 99.9th
percentile daily yield change across all USA and JPN tenors applied to the USA and JPN
curves respectively. Shown here for USA, GBR, JPN, and CAD curves.
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Figure 4: Daily yield changes for baseline cross-curve stabilized yields and cross-curve
stabilized yields after application of single-curve cascade shocks cumulating in a 200 BPS
upward shift in the USA curve level and a 100 BPS upward shift in the JPN curve level.
Shown here for USA, GBR, JPN, and CAD curves. Four extreme daily shift values between
3% and 3.5% for the shocked USA 12 and 240 month and JPN 60 and 240 month tenors
are not displayed; these extreme shifts represent less than 0.001% of the data.

6.2 Statistical Shock Evaluation

Directly evaluating the magnitude of deviations between baseline and shocked multi-curve

systems offers an informative practical assessment of stress test outcomes. To assess

statistical significance of these shocks, however, a formal hypothesis testing structure is

required. This fact motivates the use of hypothesis tests described in section 5 to assess

practical and statistical significance in unison. A selection of these tests are discussed here.

Tests assess differences between baseline cross-curve variance stabilized yields and cross-
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curve yields subject to permanent shocks on the respective USA and JPN yield curve levels.

Shocks correspond to 90th percentile daily changes in observed USA and JPN yields and are

evaluated for the one-year window from January 2014 - January 2015. Univariate hypothesis

tests shown in subsection 5.2 are used to evaluate the effect of shocks on the univariate

curve-specific 10 year - 2 year (10Y2Y) yield spread while multivariate hypothesis tests

from subsection 5.2 are used to assess effects of shocks on across the full term structure of

each curve. Selections of these shocks are shown in tables 3 and 4 respectively. Additional

results and details of test implementation are shown in appendix E.4. Finally, we emphasize

that all test results provided here are intended to illustrate the utility of the stress testing

framework developed in section 5. Comprehensive analysis of the effects of different shock

types and structures will be the subject of future work.

Spread 1 Spread 2 t-test KS-test CVM-test
USA-BL USA-S1 0.0000 0.0000 0.0000
USA-BL USA-S2 0.0000 0.0000 0.0000
USA-S1 USA-S2 0.3487 0.9831 0.9185
GBR-BL GBR-S1 0.7929 0.0123 0.0124
GBR-BL GBR-S2 0.0030 0.0000 0.0001
GBR-S1 GBR-S2 0.0102 0.0123 0.0134
GER-BL GER-S1 0.0000 0.0000 0.0000
GER-BL GER-S2 0.0000 0.0000 0.0000
GER-S1 GER-S2 0.1692 0.0335 0.0715

Table 3: Shock effects on univariate 10Y2Y yield spreads in for USA, GBR, and GER spreads.
BL, S1, and S2 are used to indicate baseline, 90th percentile USA, and 90th percentile JPN
shocks. Test columns contain corresponding p-values. Zeros indicate p-values below 10−4.
CVM test statistic computed via simulation with 104 iterations.
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Spread 1 Spread 2 Hotelling T 2 2S CM BC-CVM
JPN BL JPN S1 0.0000 0.0000 0.1480
JPN BL JPN S2 0.0000 0.0000 0.0090
JPN S1 JPN S2 0.0000 0.0000 0.2400
GBR BL GBR S1 0.0000 > 0.0010 0.0450
GBR BL GBR S2 0.0000 0.0000 0.0270
GBR S1 GBR S2 0.0000 > 0.0001 0.9940
CAD BL CAD S1 0.0000 0.0000 0.0040
CAD BL CAD S2 0.0000 0.0000 0.0230
CAD S1 CAD S2 0.0000 0.0000 0.7000

Table 4: Shock effect comparisons over curve-specific term structures for JPN, GBR, and
CAD curves. BL, S1, and S2 are used to indicate baseline, 90th percentile USA, and
90th percentile JPN shocks. 2S CM and BC-CVM refer to two-sample covariance matrix
and Bernstein copula-CVM tests. All test columns contain corresponding p-values. Zeros
indicate p-values below 10−4. 2S CM test yields approximate p-value lower bound.

7 Conclusion

Well-designed stress tests provide key metrics for institutions and regulatory bodies alike to

accurately assess resilience against economic shocks. Effective stress test design presents a

challenging problem; financial systems are deeply interconnected, and specialized models

are required to accurately capture dependencies across different instruments. In this work,

we introduced a stress testing framework used to evaluate the effects of shocks on collections

of sovereign yield curves. The framework employs a novel multi-yield curve model which is

used to characterize cross-curve covariance structures over arbitrarily many yield curves.

The model is fully data-adaptive and clearly interpretable, and allows for construction,

application, and evaluation of a wide array of different shocks. Future work could look

to extend the core multi-curve model to incorporate additional risk factors or explore

applications of the model and stress testing framework in different fixed-income markets.
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Supplemental Appendix Structure

This appendix contains all supplemental information for Cross-Curve Interest Rate

Stress Testing With Endogenous Curve Dynamics (hereafter CCIRST). Content

includes all relevant mathematical derivations, extended discussion of techniques and

implementation of the core stress testing framework, additional numerical results, and all

plots, figures, and tables referenced in CCIRST. Details on parameter estimation techniques

used in CCIRST are provided in appendix A. Appendix B contains derivations of all core

theoretical results of CCIRST; these derivations have previously appeared in some form in

the related literature (for example in Johansen [1988] and Hoff and Niu [2012]), although in

all cases, additional clarifying detail previously split across a number of different sources is

provided. Appendix C describes additional components of the hypothesis tests and stress

testing framework developed in CCIRST. Conditional stress testing is developed in appendix

D. Extended numerical results are provided in appendices E and F. Additional plots and

figures are given in appendix G.
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A Parameter Estimation

This section contains descriptions of all parameter estimation techniques used calibrating the

multi-curve model described in CCIRST section 4. These consist of estimation methodologies

for DNS latent factors, cointegration and reversion matrices, and covariance regression

parameters.

A.1 DNS Estimation

Estimation of DNS latent factors βi,t = (Li,t, Si,t, Ci,t)⊤ is an inherently nonlinear prob-

lem due to the presence of dynamic shape parameter λi,t. Rather than estimating DNS

parameters through nonlinear least squares (NLS) techniques, simplifying assumptions are

often made on λi,t. For example, λi,t can be fixed at some predetermined constant value.

Alternatively, λi,t may be separately estimated from βi,t using a two-step procedure where

an optimal λ̂i,t is estimated in step one, and then ordinary least squares (OLS) is used to

compute β̂i,t. This procedure is outlined here.

Let yi,t be a curve of arbitrary yields observed at times t ∈ T for ordered tenors τj . Partition

the set of observation times into P disjoint sequential intervals I1, I2, · · · , IP . Estimation

proceeds as follows.

Step I: Define a dense grid Λ = {λ∗
1, λ∗

2, · · · , λ∗
k} of potential shape parameter values,

common across all partition intervals Ip. Construct K factor loading matrices Φi,t(λ∗
k) = Φ

(k)
i,t

corresponding to each λ∗
k ∈ Λ. Perform K OLS regressions at each time step t ∈ T estimating

β̂
(k)
i,t for each factor loading matrix Φ

(k)
i,t . Finally, for each interval Ip, select optimal shape

parameter λ̂i,Ip as

λ̂i,Ip = arg min
λ∗

k
∈Λ

∑
t∈Ip

||yi,t − Φ
(k)
i,t β̂

(k)
i,t ||22 (A.1)

Step II: Select optimal β̂i,t for each interval Ip as the DNS latent factor OLS estimates
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computed using the factor loadings corresponding to optimal shape parameter λ̂i,Ip identified

in equation (A.1). A VAR(p) model is then fit to the selected β̂i,t process in each interval

Ip to obtain estimates µ̂i and ϑ̂i,l, in the form of CCIRST equation (2.7). This fitting also

yields the transition disturbance process {νt}t∈Ip corresponding to each time interval.

Alternatively, optimal parameter estimation may be performed in a one-step process through

application of the Kalman filter as in, for example, Diebold et al. [2006]. While application

of the Kalman filter for state estimation results in improved estimate efficiency, the speed

and relative simplicity of the two-step approach make it a more natural choice for practical

application within the stress testing framework described in CCIRST section 5.
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A.2 Cointegration Spread Estimation

Cointegration spreads can be estimated using the maximum likelihood estimator of Johansen

[1988]. In this approach, one can compute closed-form parameter estimates for the ECM

presented in CCIRST equation (3.2) through maximum likelihood estimation conditional

on Gaussian white noise error process ηt ∼ MVN (0,Ω) and known cointegration rank r.

These maximum likelihood estimates are calculated by rewriting CCIRST equation (3.2) as

ηt = ∆Zt − ΠZt−1 −
p−1∑
i=1
ϕ̃i∆Zt−i −ψDt

= Z0,t + FG⊤Z1,t +φZ2,t

(A.2)

with Z0,t = ∆Zt, Z1,t = Zt−1, Z2,t = (∆Zt−1, · · · , ∆Zt−p+1, Dt)⊤, and φ =

(ϕ̃1, · · · , ϕ̃p−1,ψ). Define moment matrices Mij by

Mij = 1
N

∑
t∈T

Zi,tZ⊤
j,t (A.3)

for i, j ∈ {0, 1, 2}. Additionally, define auxiliary regressions of Z0,t and Z1,t on Z2,t in terms

of these moment matrices. This restructuring yields the regression equations

Z0,t = M02M−1
22 Z2,t + r0,t

Z1,t = M12M−1
22 Z2,t + r1,t

(A.4)

where ri,t, i = 1, 2 are the corresponding regression residuals. The resulting residual sum of

squares matrices are then

Sij = 1
N

tN∑
t=t1

ri,tr⊤
j,t (A.5)

Finally, letting v1, · · · , vr denote the orthonormal set of eigenvectors corresponding to the

r largest eigenvalues of S−1/2
11 S01S10S−1

11 , maximum likelihood estimates for the reversion

and cointegration matrices are

F̂ = S01Ĝ(Ĝ⊤S11Ĝ)−1

Ĝ = S−1/2
11

(
v1 : v2 : · · · : vr

) (A.6)
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The full closed-form likelihood corresponding to these estimates then satisfies

Lmax ∝
[
|S00|

r∏
i=1

(1 − λi)
]−N/2

(A.7)

where λi are the eigenvectors corresponding to eigenvalues vi. Full derivation of these

estimates and the associated likelihood are provided in supplemental appendix B.1.

Critically, these estimates are conditional on predetermined cointegration rank r. While

this rank is rarely known a priori, it can be estimated from the data using the trace or

maximum eigenvalue tests described by Johansen [1988]. Details of these tests are described

in supplemental appendix B.1.
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A.3 Covariance Regression Estimation

As shown by van Jaarsveldt et al. [2024], there exists no closed-form maximum likelihood

estimate for parameters A, B, and Ψ in the covariance regression model of CCIRST

subsection 2.4. Instead, these parameters can be estimated through an iterative expectation

maximization (EM) scheme. Define error processes {γt}t∈T and {ϵt}t∈T as

γt1 , · · · , γtN

i.i.d∼ N (0, 1)

ϵt1 , · · · , ϵtN

i.i.d∼ MVN (0,Ψ)
(A.8)

for some unknown baseline covariance matrix Ψ. Marginal likelihood of any individual error

term γt given responses wt, covariates x1,t and x2,t, and coefficients A, B,Ψ is denoted

p(γt|wt, x1,t, x2,t, A, B,Ψ) and is shown in appendix B.3 to be univariate Gaussian with

variance and mean given by

vt = (x⊤
2,tB⊤Ψ−1Bx2,t)−1

mt = (wt − µxt,1)⊤Ψ−1Bx2,tvt

(A.9)

Define the matrix of response residuals W ∈ RN×P spanning residuals at all times t ∈ T

and with associated covariates X1 ∈ RN×Q1 and X2 ∈ RN×Q2 by

W =
(

wt1 : wt2 : · · · : wtN

)⊤

X1 =
(

x1,t1 : x1,t2 : · · · : x1,tN

)⊤

X2 =
(

x2,t1 : x2,t2 : · · · : x2,tN

)⊤

(A.10)

Let Q = Q1 +Q2 be the cumulative dimension across the two covariate processes, and define

augmented covariate matrix X̃ ∈ R2N×Q and augmented response matrix W̃ ∈ R2N×P by

X̃(t) = (x⊤
1,t, mtx⊤

2,t)

X̃(N+t) = (0⊤
Q1 , v

1/2
t x⊤

2,t)

W̃ = (W⊤,0⊤
N×P )⊤

(A.11)
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where superscript (t) indicates the first N rows of X̃ while superscript (N + t) indicates

rows (N + 1) through 2N of X̃. Also define γ = (γt1 , · · · , γtN
)⊤ ∈ RN as the vector of latent

random errors across all t ∈ T . Denoting et = (wt − µx1,t) as the residual error associated

with the tth observation, the full collection E ∈ RN×P of residuals is then

E =
(

et1 : et2 : · · · : etN

)⊤
(A.12)

Through the independence of γt errors, the complete data log-likelihood of A, B, and Ψ

can be defined using the joint Gaussian γ likelihood as

−2l(A, B,Ψ) = NP log(2π) + N log |Ψ| +
∑
t∈T

(
r⊤

t Ψ
−1rt

)
(A.13)

where rt = (et − γtBx2,t)⊤. Taking the conditional expectation over γ of the complete

data log-likelihood in equation (A.13) given some collection of θ = (A, B,Ψ) estimates

θ̂ = (Â, B̂, Ψ̂) then yields

−2γ

[
l(A, B,Ψ)|θ̂

]
= NP log (2π)) + N log |Ψ̂| +

∑
t∈T

γ

(
r⊤

t Ψ
−1rt|θ̂

)
(A.14)

For each t ∈ T , the expectation within the summation in equation (A.14) evaluates to

γ

(
r⊤

t Ψ
−1rt|θ̂

)
= (r⊤

t,θΨ̂
−1rt,θ) + v

1/2
t x⊤

2,tB̂⊤Ψ̂−1B̂x2,tv
1/2
t

(A.15)

where rt,θ denotes conditional expectation γ

[
rt|θ̂

]
. Substituting in the closed-form expecta-

tion from equation (A.15), the conditional expectation in equation (A.14) can be written in

terms of matrices X̃ and W̃, as well as C = (A, B) as

−2
[
l(C,Ψ)|Ĉ, Ψ̂

]
= NP log(2π) + N log |Ψ̂|

+ Trace
[
(W̃ − X̃Ĉ⊤)(W̃ − X̃Ĉ⊤)⊤Ψ̂−1

] (A.16)

Maximizing equation (A.16) over Ĉ and Ψ̂ yields closed-form estimates C̆ and Ψ̆ given by

C̆ = W̃⊤X̃(X̃⊤X̃)−1

Ψ̆ = 1
N

(W̃ − X̃C̆⊤)(W̃ − X̃C̆⊤)⊤
(A.17)
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Derivation of the final closed-form M-step estimates is shown in appendix (B.4). Starting

with initial θ estimates θ(0), the EM algorithm proceeds from iteration k = 1 by solving

for the conditional expectation of l(A, B,Ψ) given θ(k−1), then maximizing the resulting

expectation to obtain θ(k). These estimates are used as inputs in the next iteration of the

algorithm, with termination upon reaching some predefined convergence criterion.
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B Derivations

B.1 Johansen ML Estimation

Here we derive the Johansen ML estimator used to estimate cointegration and reversion

matrices alongside full maximized likelihood in equations (A.6) and (A.7). Recall the ECM

representation of a cointegrated VAR(p) series Zt ∈ RK is given by

∆Zt = ΠZt−1 +
p−1∑
i=1
ϕ̃i∆Zt−i +ψDt + ηt (B.1)

as described in CCIRST equation (3.2). In this construction, Dt ∈ RK×K is a deterministic

process, ψ ∈ RK×K are constant scaling terms, N × N real matrices Π and ϕ̃i are linear

combinations of the coefficients of Zt as in CCIRST equation (3.3), and Π admits the

decomposition Π = FG⊤ where F and G are reversion rate and cointegration matrices of

known rank r normalized as in CCIRST equation (3.4), and ηt are some error process. The

error process can be written in terms of other variables as

ηt = ∆Zt − ΠZt−1 −
p−1∑
i=1
ϕ̃i∆Zt−i −ψDt

= Z0,t + FG⊤Z1,t +φZ2,t

(B.2)

by defining terms Z0,t = ∆Zt, Z1,t = Zt−1, Z2,t = (∆Zt−1, · · · , ∆Zt−p+1, Dt)⊤, and φ =

(ϕ̃1, · · · , ϕ̃p−1,ψ). Letting ηt ∼ MVN (0,Ω), the joint log-likelihood of N i.i.d. errors can

be formulated as

l(F, G,Ω,φ|ηt1 , · · · ,ηtN
) = −KN

2 log(2π) − N

2 log |Ω|

− 1
2
∑
t∈T

(Z0,t − FG⊤Z1,t −φZ2,t)⊤Ω−1(Z0,t − FG⊤Z1,t −φZ2,t)

(B.3)

For notational simplicity, let l(F, G,Ω,φ) := l(F, G,Ω,φ|ηt1 , · · · ,ηtN
). Additionally define

full auxiliary residual Jt := (Z0,t − FG⊤Z1,t −φZ2,t). Differentiating the log-likelihood in
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(B.3) with respect to φ then yields

∂l(F, G,Ω,φ)
∂φ

= −1
2
∑
t∈T

∂

∂φ

(
−Z⊤

2,tφ
⊤Ω−1Jt − J⊤

t φZ2,t

)

=
∑
t∈T

Ω−1(Z0,t − FG⊤Z1,t −φZ2,t)Z⊤
2,t

(B.4)

Setting (B.4) to zero and solving for φ yields estimate

φ̂ =
(∑

t∈T
Z0,tZ⊤

2,t − FG⊤ ∑
t∈T

Z1,tZ⊤
2,t

)(∑
t∈T

Z2,tZ⊤
2,t

)−1

=
(
M02 − FG⊤M12

)
M−1

22

(B.5)

having introduced notation Mij = N−1∑tN
t=t1 Zi,tZj,t for the corresponding product mo-

ment matrices. Through application of the Frisch-Waugh-Lovell theorem, define auxiliary

regression equations of Z0,t and Z1,t on Z2,t taking the form

Z0,t = M02M−1
22 Z2,t + r0,t

Z1,t = M12M−1
22 Z2,t + r1,t

(B.6)

Here ri,t, i = 1, 2 are the corresponding regression residuals. Rewriting (B.2) as a function

of these residuals, it follows that

ηt = r0,t − FG⊤r1,t ∼ MVN (0,Ω) (B.7)

Substituting estimate φ̂ into the log-likelihood shown in (B.3) and rewriting the resulting

equation as a function of residuals r0,t and r1,t yields the restructured log-likelihood

l(F, G,Ω) = −KN

2 log(2π)− N

2 log |Ω|− 1
2
∑
t∈T

(r0,t −FG⊤r1,t)⊤Ω−1(r0,t −FG⊤r1,t) (B.8)

Differentiating with respect to reversion rate matrix F gives the result

∂l(F, G,Ω)
∂F

=
tN∑

t=t1

Ω−1(r0,t − FG⊤r1,t)r⊤
1,tG (B.9)

and maximizing with respect to F then yields the estimate

F̂ =
(∑

t∈T
r0,tr⊤

1,t

)
G
[
G⊤

(∑
t∈T

r1,tr1,t

)
G
]−1

= S01G
(
G⊤S11G

)−1
(B.10)
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with the introduction of Sij = N−1∑tN
t=t1 ri,tr⊤

j,t for the residual sum of square matrices.

Maximizing (B.8) with respect to Ω can be done by directly differentiating

∂l(F, G,Ω)
∂Ω

= −N

2 Ω−⊤ + 1
2
∑
t∈T

Ω−⊤(r0,t − FG⊤r1,t)(r0,t − FG⊤r1,t)⊤Ω−⊤ (B.11)

Setting the above expression to zero and solving for Ω yields estimate

Ω̂ = 1
N

∑
t∈T

(r0,tr⊤
0,t − FG⊤r1,tr⊤

0,t − r0,tr⊤
1,tGF⊤ + FG⊤r1,tr⊤

1,tGF⊤)

= S00 − FG⊤S10 − S01GF⊤ + FG⊤S11GF⊤

(B.12)

Substituting estimate F̂ into (B.12) results in the further simplification

Ω̂ = S00 − S01G(G⊤S11G)−1G⊤S⊤
01 (B.13)

In general, G will be both non-square and not of full rank, assuming cointegration rank

r < K. Additionally, the optimal cointegration matrix is non-unique and allows for

infinitely many arbitrary rotations; as such, directly differentiating (B.8) with respect to G

is insufficient to identify maxima. Instead, first note a general result for the maxima of a

joint multivariate Gaussian likelihood.

Lemma B.1. Consider a joint multivariate Gaussian density parametrized in terms of

arbitrary K × r matrices α,β, and K × K covariance Σ with corresponding log-likelihood

l(α,β,Σ) = −KN

2 log(2π) − N

2 log |Σ| − 1
2

N∑
n=1

gn(α,β)⊤Σ−1gn(α,β) (B.14)

where each gn(·, ·) is an arbitrary vector-valued function of parameters α and β. The

maxima of the corresponding likelihood function is of the form

Lmax(α,β,Σ) = C|Σ̂(α̂, β̂)|−N/2 (B.15)

where α̂ and β̂ are arbitrary ML estimates of α and β, Σ̂(α̂, β̂) is the ML estimate of Σ

as a function of ML estimates of α and β obtained from (B.14), and C ∈ R is an arbitrary

constant.
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Proof. Note that the maxima of (B.14) with respect to Σ can be directly calculated by

differentiating

∂l(α,β,Σ)
∂Σ

= −N

2 Σ−⊤ + 1
2

N∑
n=1

Σ−⊤gn(α,β)gn(α,β)⊤Σ−⊤ (B.16)

The corresponding estimate Σ̂ := Σ̂(α,β) is then

Σ̂ = 1
N

N∑
n=1

gn(α,β)gn(α,β)⊤ (B.17)

Substituting this estimate into (B.14), the obtain a likelihood parametrized in terms of α

and β as

L(α,β) = (2π)−KN/2|Σ̂|−N/2 exp
(

−1
2

N∑
n=1

gn(α,β)⊤Σ̂−1gn(α,β)
)

(B.18)

Noting that ∑N
n=1 gn(α,β)⊤Σ̂−1gn(α,β) is simply a constant, it can be replaced by its trace

to obtain

L(α,β) = (2π)−KN/2|Σ̂|−N/2 exp
(

−1
2 Trace

[
N∑

n=1
gn(α,β)⊤Σ̂−1gn(α,β)

])

= (2π)−KN/2|Σ̂|−N/2 exp
(

−1
2 Trace

[
N∑

n=1
gn(α,β)gn(α,β)⊤Σ̂−1

])

= C|Σ̂(α,β)|−N/2

(B.19)

by using fact that the terms inside the trace operator reduce to the identity and the

exponential term is thus independent of parameters α and β. Substituting ML estimates

α̂ and β̂ in place of α and β, it can be shown that the maximum likelihood is given by

Lmax(α,β,Σ) = C|Σ̂(α̂, β̂)|, thus proving the claim.

As consequence of lemma (B.1), the likelihood corresponding to the log-likelihood in equation

(B.14) satisfies Lmax(F, G,Ω) ∝ |Ω̂(F̂, Ĝ)|−N/2. Substituting F̂ := F̂(G) as obtained in

equation (B.10) shows that

Lmax(F, G,Ω) ∝ |Ω̂(Ĝ)|−N/2 (B.20)
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From this result, it is clear that obtaining the ML estimate Ĝ is equivalent to solving the

minimization problem

Ĝ = argminG|Ω̂(G)| = argminG|S00 − S01G(G⊤S11G)−1G⊤S10| (B.21)

under the constraint that rank(Ĝ) = r and having used the fact that S⊤
ij = Sji. To carry

out this minimization, note that the determinant of block matrices in the form

Σ =

Σ1 Σ2

Σ⊤
2 Σ3

 (B.22)

satisfy the following equalities given by equation (6.2.1) of Meyer [2000]:

|Σ| = |Σ1||Σ3 − Σ⊤
2 Σ

−1
1 Σ2| = |Σ3||Σ1 − Σ2Σ

−1
3 Σ⊤

2 | (B.23)

Define the block matrix Σ as

Σ =

 S00 S01G

G⊤S10 G⊤S11G

 (B.24)

Taking the determinant of Σ using (B.23), it follows that

|Σ| = |S00||G⊤S11G − G⊤S10S−1
00 S01G|

= |G⊤S11G||S00 − S01G(G⊤S11G)−1G⊤S10|

= |G⊤S11G||Ω̂(G)|

(B.25)

Following remark (8.2.26) of Banerjee [1993], the minimization problem in equation (B.21)

can be reformulated in terms of the constrained optimization problem

Ĝ = argminG|S00|
|G⊤S11G − G⊤S10S−1

00 S01G|
|G⊤S11G|

= argminG|G⊤(S11 − S10S−1
00 S01)G| s.t. G⊤S11G = Ir

= argminG|G⊤S1/2
11 (IK − S−1/2

11 S10S−1
11 S01S−1/2

11 )S1/2
11 G| s.t. G⊤S11G = Ir

(B.26)

Per Rao [1973] p. 65, a determinant of the form |Σ⊤
1 Σ2Σ1|, Σ1 ∈ RK×r and Σ2 ∈ RK×K

where the columns of Σ2 are orthogonal is minimized at

min|Σ⊤
1 Σ2Σ1| = σ1 · · · σrλK−r+1 · · · λK (B.27)
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where λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 are the eigenvalues of Σ2 and σ1, · · · , σr are the diagonal

of Σ⊤
1 Σ1. Defining matrices Σ1 = S1/2

11 G and Σ2 = (IK − S−1/2
11 S10S−1

11 S01S−1/2
11 ), it follows

that Σ⊤
1 Σ1 = Ir, and the minimization problem in (B.26) is solved by finding the smallest

r eigenvalues of Σ2, or equivalently by finding the r largest eigenvalues of (IK − Σ2). That

is, by solving the eigenvalue problem

|IKλ − S−1/2
11 S01S−1

11 S10S−1/2
11 | = 0 (B.28)

Denoting by λ1 ≥ λ2 · · · ≥ λK ≥ 0 the eigenvalues of (IK − Σ2), with corresponding

orthonormal eigenvectors v1, · · · , vK . The solutions to equation (B.28) then satisfy the

relationship

λivi = S−1/2
11 S01S−1

00 S10S10S−1/2
11 vi (B.29)

Defining scaled eigenvectors ṽi = S−1/2
11 vi, left-multiplication by S1/2

11 results in the equalities

λiS1/2
11 vi = λiS11ṽi

= S1/2
11 S−1/2

11 S01S−1
00 S10S−1/2

11 vi

= S01S−1
00 S10ṽi

(B.30)

By setting G̃ =
(

ṽ1 : · · · : ṽr

)
= S−1/2

11

(
v1 : · · · : vr

)
, it then follows that

G̃⊤S−1/2
11 S01S−1

00 S10S−1/2
11 G̃ = diag(λ1, · · · , λr) (B.31)

where diag(λ1, · · · , λr) is the diagonal matrix whose entries are the r largest eigenvalues

of (IK − Σ2). Substituting G̃ into the objective function of the minimization problem in

(B.26) results in the simplification

|G̃⊤(S11 − S10S−1
00 S01)G̃| = |Ir − diag(λ1, · · · , λr)| =

r∏
i=1

(1 − λi) (B.32)

which is exactly the form of the minima of |Σ⊤
1 Σ2Σ1| in (B.27). Since G̃ satisfies the

constraint G̃⊤S11G̃ = Ir and attains the minima described in (B.27) when substituted into
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the objective of (B.26), the ML estimate is given by Ĝ = argminG|G⊤(S11−S10S−1
00 S01)G| =

G̃. The likelihood function in (B.20) then satisfies

Lmax(F, G,Ω) ∝
[
|Ω̂(Ĝ)

]−N/2
=
[
|S00|

r∏
i=1

(1 − λi)
]−N/2

(B.33)

The full set of Johansen ML method estimates and the resulting maximized likelihood

function are then

φ̂ =
(
M02 − F̂Ĝ⊤M12

)
M−1

22

Ω̂ = S00 − S01G(G⊤S11G)−1G⊤S⊤
01

F̂ = S01Ĝ
(
Ĝ⊤S11Ĝ

)−1

Ĝ = S−1/2
11

(
v1 : · · · : vr

)

Lmax ∝
[
|S00|

r∏
i=1

(1 − λi)
]−N/2

(B.34)
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B.2 Cointegration Hypothesis Testing

The likelihood function given in appendix (B.1) is used to construct the trace and maximum

eigenvalue test statistics described in CCIRST subsection 4.3. Consider an ECM ∆Zt in

the form of CCIRST equation (B.1) with reversion and cointegration matrices F and G

obtainable through the decomposition of long-run equilibrium matrix Π as Π = FG⊤,

and i.i.d. multivariate Gaussian errors ηt. Suppose the ECM has true cointegration rank

r = rank(Π). The trace test statistic Dtr is formed to test the hypothesis test

H0 : r = r0 vs HA : r > r0

where it should be noted that while the alternative hypothesis appears one-sided, r is

upper-bounded by the maximum possible rank K of Π. The log-likelihood under the

respective null and alternative hypotheses are obtained using the likelihood derived in

equation (B.34), and the resulting likelihood ratio test statistic is

Dtr = −2
[

log L(k) − log L(r0)
]

= −2
[N

2 log
(

|S00|
k∏

i=1
(1 − λi)

)
− N

2 log
(

|S00|
r0∏

i=1
(1 − λi)

) ]

= −N
k∑

i=r0+1
log

(
1 − λi

)
(B.35)

The maximum eigenvalue test statistic Dm corresponds to hypothesis test

H0 : r = r0 vs HA : r = r0 + 1

Again, the log-likelihood under the respective null and alternative hypotheses can be directly

obtained using the likelihood derived in equation (B.34). The resulting likelihood ratio test

statistic is then

Dm = −2
[

log L(r0 + 1) − log L(r0)
]

= −2
[N

2 log
(

|S00|
r0+1∏
i=1

(1 − λi)
)

− N

2 log
(

|S00|
r0∏

i=1
(1 − λi)

) ]

= −N
[

log(1 − λr0+1)
]

(B.36)
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Asymptotic behavior of test statistics Dtr and Dm are defined by the stochastic integral

matrix Ξ given by

Ξ =
(∫ 1

0
W dW⊤

)⊤ (∫ 1

0
WW⊤du

)−1 (∫ 1

0
W dW⊤

)
(B.37)

where W := W (u) is the (N − r)-dimensional standard Brownian motion. Under H0, Dtr

and Dm converge to the respective trace and maximum eigenvalue of Ξ. That is, as N → ∞,

we have

Dtr → trace(Ξ), Dm → λmax(Ξ) (B.38)

The stochastic integral in equation (B.37) cannot be solved in closed form; values are

computed by Monte Carlo simulation. Tabulated critical values for both test statistics

appear in Johansen [1988]. Either hypothesis test may be used to determine cointegration

rank depending on the structure of available data; a comprehensive analysis of the two tests

is performed by Lütkepohl et al. [2001], who determine that neither test offers uniformly

superior performance. Cointegration spreads can be extracted through sequential application

of either the trace or maximum likelihood test for hypotheses r0 = 0, 1, · · · , (N −1). Testing

terminates after identifying the minimum rank r = r0 for which H0 is not rejected. Reversion

and cointegration matrices (and by extension cointegration spreads) are then determined

using the Johansen ML parameter estimates.
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B.3 Covariance Regression Gamma Likelihood

This section contains a derivation of the conditional γt likelihood described by mean and

variance functions in equations (A.9). Let γt, wt, A, B, Ψ, x1,t, and x2,t be as defined in

appendix 4.4. Conditional likelihood of γt can be written

p(γt|wt, x1,t, x2,t, A, B,Ψ) = p(wt|γt, x1,t, x2,t, A, B,Ψ, )p(γt|x1,t, x2,t, A, B,Ψ)
p(wt|x1,t, x2,t, A, B,Ψ)

= (2π)−N/2|Ψ|−1/2

(2π)−N/2|Ψ + Bx2,tx⊤
2,tB⊤|−1/2

× exp
(

−1
2(wt − µx1,t − γtBx2,t)⊤Ψ−1(wt − µx1,t − γtBx2,t)

)
× exp

(1
2(wt − µx1,t)⊤(Ψ + Bx2,tx⊤

2,tB⊤)−1(wt − µx1,t)
)

× (2π)−1/2 exp
(

−1
2γ2

t

)
(B.39)

where the first equality is obtained directly via Bayes’ theorem and the second follows by

expanding Gaussian likelihoods for the random effects and cross-correlated errors respectively.

Applying the matrix determinant lemma and Sherman-Morrison formula, it follows that

|Ψ + Bx2,tx⊤
2,tB⊤| = (1 + x⊤

2,tB⊤Ψ−1Bx2,t) × |Ψ| (B.40)

(Ψ + Bx2,tx⊤
2,tB⊤)−1 = Ψ−1 −

Ψ−1Bx2,tx⊤
2,tB⊤Ψ−1

1 + x⊤
2,tB⊤Ψ−1Bx2,t

(B.41)

Letting vt =
(
1 + x⊤

2,tB⊤Ψ−1Bx2,t

)−1
and m∗

t =
(
(wt − µx1,t)Ψ−1Bx2,t

)
, and substituting

the results of equations (B.40) and (B.41) into the conditional likelihood in equation (B.39)
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results in the simplification

p(γt|wt, x1,t, x2,t, A, B,Ψ)

= (x⊤
2,tB⊤Ψ−1Bx2,t)1/2

× exp
(

−1
2(wt − µx1,t)⊤

[
Ψ−1Bx2,tx⊤

2,tB⊤Ψ−1

1 + x⊤
2,tB⊤Ψ−1Bx2,t

]
(wt − µx1,t)

)

× exp
(1

2γt

[
(wt − µx1,t)⊤Ψ−1Bx2,t + x⊤

2,tB⊤Ψ−1(wt − µx1,t)
])

× (2π)−1/2 exp
(

−1
2γ2

t

[
x⊤

2,tB⊤Ψ−1Bx2,t

])
= (2π)−1/2v

−1/2
t × exp

(
−1

2(m∗
t )2vt + γtm

∗
t − 1

2γ2
t v−1

t

)
= (2πvt)−1/2 exp

(
−1

2v−1
t (γt − m∗

t vt)2
)

= (2π)−1/2
(
1 + x⊤

2,tB⊤Ψ−1Bx2,t

)1/2

× exp

−1
2

(
γt − (wt−µx1,t )⊤Ψ−1Bx2,t

(1+x⊤
2,tB⊤Ψ−1Bx2,t)

)
(1 + x⊤

2,tB⊤Ψ−1Bx2,t)−1



(B.42)

which is exactly the univariate Gaussian likelihood with mean and variance as in equation

(A.9).
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B.4 Covariance Regression EM Algorithm

Coefficient matrices A and B and baseline covariance matrix Ψ next-step estimates for

the EM algorithm described in subsection 4.4 are derived here. To do so, we maximize

equation (A.16) over Ĉ and Ψ̂ respectively. For notational clarity, this derivation adopts the

convention of using C and Ψ as the previous estimates given by Ĉ and Ψ̂ in equation (A.16).

Note that both values are known in each iteration of the maximization step. Maximization

of (A.16) with respect to C is computed as

∂

∂C
(
NP log(2π) + N log |Ψ̂| + Trace

[
(W̃ − X̃C⊤)(W̃ − X̃C⊤)⊤Ψ̂−1

])
= ∂

∂C
(
Trace

[
W̃W̃⊤Ψ−1 − W̃CX̃⊤Ψ−1 − X̃C⊤W̃⊤Ψ−1 + X̃C⊤CX̃⊤Ψ−1

])
= −W̃⊤Ψ−⊤X̃ − W̃⊤Ψ−1X̃ + 2CX̃⊤Ψ−⊤X̃

(B.43)

having used the fact that ∂
∂Ω

(Trace [MΩN]) = M⊤N⊤ and ∂
∂Ω

(
Trace

[
Ω⊤ΩM

])
= MΩ +

M⊤Ω. Noting that Ψ−1 = Ψ−⊤, setting the result of (B.43) to zero and solving for C

yields estimate

C̆ = W̃⊤Ψ−1X̃(X̃⊤Ψ−1X̃)−1 (B.44)

Substituting estimate C̆ into equation (A.16), maximization with respect to Ψ can be

performed directly by computing

∂

∂Ψ

(
NP log(2π) + N log |Ψ| + Trace

[
(W̃ − X̃C̆⊤)(W̃ − X̃C̆⊤)⊤Ψ−1

])
= NΨ−⊤ − Ψ−⊤

[
(W̃ − X̃C̆⊤)(W̃ − X̃C̆⊤)⊤

]
Ψ−⊤

(B.45)

by using the fact that ∂
∂Ω

(log |Ω|) = Ω−⊤ and ∂
∂Ω

(Trace [MΨ−1N]) = −Ω−⊤NMΩ−⊤.

Setting the result of (B.45) to zero and solving for Ψ yields estimate

Ψ̆ = 1
N

(W̃ − X̃C̆⊤)(W̃ − X̃C̆⊤)⊤ (B.46)

It should be noted that the estimate of C appearing in equation (B.43) is exactly the

optimal generalized least squares (GLS) estimate for C under the random effects model
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presented in CCIRST equation (2.20). As iterative estimation via the EM algorithm yields

nearly homoskedastic residuals at each step, the Ψ matrix estimates are effectively diagonal

and it is standard practice to replace the GLS estimate of C with the corresponding OLS

estimate, in which case the approximation

C̆ = W̃⊤X̃(X̃⊤X̃)−1 (B.47)

is used in place of the result in equation (B.43). This approximation is used by Hoff and

Niu [2012] and described in the EM maximization step and corresponding implementation

of van Jaarsveldt et al. [2024]. In settings where the GLS estimate is of interest, an efficient

M-step may be performed by first Cholesky decomposing Ψ = LL⊤, then computing the

OLS estimate

C̆ = W⊤
∗ X∗(X⊤

∗ X∗)−1

having set W⊤
∗ = LW̃ and X∗ = LX̃.
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C Scenario Generation Hypothesis Testing

Hypothesis tests study the relationships between the distributions of shocked variance-

normalized yield curves Ysk
t distributed as

Ysk
t ∼ DMD (µsk

t ,Σsk
t ) (C.1)

Particular curve- or tenor-specific shocked and cross-curve variance normalized yield curves

are denoted Ysk
i,·,t or Ysk

·,j,t and assumed to follow distributions

Ysk
i,·,t ∼ DM

(
µsk

i,·,t,Σ
sk
i,·,t

)
Ysk

·,j,t ∼ DD

(
µsk

·,j,t,Σ
sk
·,j,t

) (C.2)

Comparisons are also made between simultaneous curve- and tenor-specific shocked yields

given by

ysk
i,j,t ∼ D

(
µsk

i,j,t, (σsk
i,j,t)2

)
(C.3)

with corresponding CDFs denoted by F sk(Ysk
t ), F sk(Ysk

·,·,t), and F sk(ysk
i,j,t). All distributional

parameters are assumed to be time-varying. For all multivariate tests, it is assumed that

nk curves Ysk
t,1, · · · , Ysk

t,nk
have been sampled from shocked curve distributions. Full sample

collections are denoted by Ysk
t,∗ with corresponding sample means Ȳsk

t . Sample covariance

matrices are denoted V sk
t with values vsk

t,pq corresponding to the (p, q)th entry. Empirical

sample CDFs are denoted F sk
nk

(Ysk
t ). All notation is extended to curve- or tenor-specific

samples via sub-indexing as in equation (C.2).

Univariate tests assume nk samples ysk
i,j,t,1, · · · , ysk

i,j,t,nk
are available from shocked yield

distributions corresponding to yield ysk
i,j,t. Sample mean and variance are indicated as ȳsk

t

and vsk
t respectively, where curve and tenor sub-indexing is dropped for notational clarity.

Empirical univariate sample CDFs are denoted F sk
nk

(ysk
t ).

Other hypothesis tests presented here can be used to evaluate relationships between cross-
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curve or cross-tenor spreads. These spreads are vector-valued quantities

κsk
ii′,·,t =

[
Ysk

i,·,t − Ysk
i′,·,t

]⊤
∼ KM

(
µsk

ii′,·,t,Σ
sk
ii′,·,t

)
κsk

·,jj′,t =
[
Ysk

·,j,t − Ysk
·,j′,t

]⊤
∼ KD

(
µsk

·,jj′,t,Σ
sk
·,jj′,t

) (C.4)

referred to as κsk
t when described in generality. Likewise, simultaneous cross-curve and

cross-tenor spreads are

κsk
ii′,jj′,t =

[
ysk

i,j,t − ysk
i′,j′,t

]
∼ K

(
µsk

ii′,jj′,t, (σsk
ii′,jj′,t)2

)
(C.5)

and similarly denoted in generality as κsk
t . Distributions KM and KD have corresponding

CDFs F sk
κ (κsk

t ), while the CDF of K is given by F sk
κ (κsk

t ). Sub-indexing by curve and tenor

is dropped for improved notational clarity. For each shocked cross-curve or cross-tenor

spread corresponding to shock sk, it is assumed that nk samples κsk
t,1, · · · ,κsk

t,nk
are available

with corresponding sample mean κ̄t and sample covariance V sk
κ,t. Simultaneous cross-curve

and cross-tenor spreads are likewise assumed to have nk available samples κsk
t,1, · · · , κsk

t,nk

corresponding to shocks sk and with corresponding sample mean κ̄sk
t and sample variance

vsk
κ,t. Empirical spread CDFs are denoted F sk

κ,nk
(κsk

t ) and F sk
κ,nk

(κsk
t ). Descriptions of all

hypothesis tests presented in CCIRST table 1 are provided in the remainder of this appendix.
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C.1 Univariate Tests

Two-sample t-test:

The two-sample Student’s t-test is used to determine if there is a statistically significant

difference between univariate means µs1
i,j,t and µs2

i,j,t. It tests the hypothesis

H0 : µs1
i,j,t = µs2

i,j,t vs HA : µs1
i,j,t ̸= µs2

i,j,t

under the assumption that samples are independent Gaussian draws. The test is conducted

using the Student’s t-test statistic given by

t∗ = ȳs1
t − ȳs2

t(
vs1

t /n1 + vs2
t /n2

)1/2 (C.6)

Assuming equal population variances (σ2
i,j,t)s1 and (σ2

i,j,t)s2 , the t-statistic converges to

the Student’s t-distribution tw with degrees of freedom w = (n1 + n2 − 2). Without the

assumption of equal variances, the t-statistic converges to the Student’s t-distribution tv

with degrees of freedom

v = (vs1
t /n1 + vs2

t /n2)2

(vs1
t /n1)2/(n1 − 1) + (vs2

t /n2)2/(n2 − 1) (C.7)

The two-sample t-test may also be performed as a test for equality of simultaneous cross-

curve, cross-tenor spread means by replacing sample yield means and variances with sample

spread means and spread variances in equations (C.6) and (C.7).

Kolmogorov-Smirnov test:

The two-sample Kolmogorov-Smirnov (KS) test assesses whether two sets of data are drawn

from the same arbitrary unspecified distribution. For collections of nk samples drawn from

continuous CDFs F sk(ysk
t ), it tests the hypothesis

H0 : F s1 dist= F s2 vs HA : F s1
dist
̸= F s2
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using the KS test statistic given by

DKS
n1,n2 = supyt

|F s1
n1 (ys1

t ) − F s2
n2 (ys2

t )| (C.8)

Under the null hypothesis and given sufficiently large nk, the scaled KS test statistic(
n1n2

n1+n2

)1/2
DKS

n1,n2 converges to the distribution of suprema of the absolute Brownian bridge

with tabulated critical values available in Hodges [1958]. The KS test may also be performed

to assess equality of simultaneous cross-curve and cross-tenor spread distributions by using

empirical spread CDFs F sk
κ,nk

(κt) in place of empirical yield CDFs in equation (C.8).

Cramér-von Mises test:

The CVM test assesses whether two sets of data are drawn from the same arbitrary

unspecified distribution. For collections of nk samples drawn from continuous CDFs F sk(ysk
t ),

it tests the hypothesis

H0 : F s1 dist= F s2 vs HA : F s1
dist
̸= F s2

using the CVM test statistic

DCV M
n1,n2 = n1n2

n1 + n2

∫ ∞

−∞

[
F s1

n1 (ys1
t ) − F s2

n2 (ys2
t )
]2

dG(yt) (C.9)

where G is pooled empirical distribution

G(yt) = n1

n1 + n2
F s1

n1 (ys1
t ) + n2

n1 + n2
F s2

n2 (ys2
t ) (C.10)

The limiting distribution of DCV M
n1,n2 under the null is well known and available in tabulated

form in Anderson [1962]. As in the case of the KS test, the CVM test may also be used to

assess the equivalence of spread distributions by replacing empirical yield CDFs in equations

(C.9) and (C.10) with empirical spread CDFs F sk
κ,nk

(κsk
t ).
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C.2 Multivariate Tests

Two-sample Hotelling’s T-Square Test:

The two-sample Hotelling’s T-Square test is the multivariate analogue to the two-sample

t-test and used to determine whether there is a statistically significant difference between

multivariate means µs1
t and µs2

t . It tests the hypothesis

H0 : µs1
t = µs2

t vs HA : µs1
t = µs2

t

The hypothesis is evaluated using the T-square statistic given by

T 2 = n1n2

n1 + n2

(
Ȳs1

t − Ȳs2
t

)⊤
(V p

t )−1
(
Ȳs1

t − Ȳs2
t

)
(C.11)

where V p
t is the pooled sample covariance matrix given by

V p
t = (n1 − 1)V s1

t + (n2 − 1)V s2
t

n1 + n2 − 2 (C.12)

assuming each population is multivariate Gaussian. Under the additional assumption of

equal population covariances Σs1
t and Σs2

t , the T 2 statistic converges to Hotelling’s T-squared

distribution T 2
q,w, where q = dim(Yt) and w = (n1 + n2 − 1). Various extensions of the

test are feasible in the case of unequal covariances; the approach suggested by Nel and

Van Der Merwe [1986] is one such extension, using the adjusted Hotelling’s T-squared test

statistic

T 2
adj = (Ȳs1

t − Ȳs2
t )⊤

(
V1

n1
+ V2

n2

)−1

(Ȳs1
t − Ȳs2

t ) (C.13)

Under the null, the unequal covariances adjusted T 2
adj statistic converges to Hotelling’s

T -squared distribution T 2
q,v, where degrees of freedom are q = dim(Yt) and the calculation

of v is provided by Nel and Van Der Merwe [1986].
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Two-sample covariance matrix test:

Two-sample covariance matrix tests are used to study the equality of (MD × MD)-

dimensional covariance matrices Σs1
t and Σs2

t . These tests assess the hypothesis

H0 : Σs1
t = Σs2

t vs HA : Σs1
t ̸= Σs2

t (C.14)

where Σsk
t may be replaced with curve- or tenor- specific covariances Σsk

i,·,t or Σsk
·,j,t as needed.

Various test statistics may be used in evaluating this hypothesis; this work employs the test

statistic constructed by Cai et al. [2013]. This test statistic is of the form

M∗ = maxp,q

(vs1
t,pq − vs2

t,pq)
θs1

t,pq/n1 + θs2
t,pq/n2

(C.15)

where θsk
t,pq are centered sample variances defined as

θsk
t,pq = Var

[(
ysk

t,p − µsk
t,p

) (
ysk

t,q − µsk
t,q

)]
(C.16)

where ysk
t,p and ysk

t,q are the respective pth and qth components of Ysk
t . Centered variances

may be estimated as

θ̂sk
t,pq =

nk∑
l=1

[(
ysk

t,p,l − ȳsk
t,p

) (
ysk

t,q,l − ȳsk
t,q

)
− vt,pq

]2
(C.17)

Under the null hypothesis, the location-shifted test statistic M∗ − 4 log MD + log log MD

converges to a type I extreme value distribution with known (1 − α) quantile qα of form

qα = − log(8π) − 2 log log(1 − α)−1 (C.18)

The null is then rejected when M∗ ≥ qα +4 log MD− log log MD. This test may be modified

for application to assessing differences between the cross-curve covariance matrices extracted

during the estimation procedure described in CCIRST section 4 through modification of

centering variances in equation (C.16). This modification is performed by replacing yt,p and

yt,q processes in equation (C.16) with residuals wt,p and wt,q corresponding to the p and
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qth components of full residual process wt obtained in model estimation. These modified

centered variances can be directly estimated as

θ̃sk
t,pq =

nk∑
l=1

[(
wsk

t,p,l − w̄sk
t,p

) (
wsk

t,q,l − w̄sk
t,q

)
− v̄t,pq

]2
(C.19)

where w̄t,p and w̄t,q are the mean p and qth components estimated across the full collection of

sampled shocked curve residuals wsk
t , and v̄t,pq is the average (p, q)th cross-curve covariance

matrix component.

Bernstein copula CVM-type tests:

A combined Bernstein copula and CVM test can be used to assess differences between

cross-curve or cross-tenor spreads κsk
t . These tests follow a two-step process in which

multivariate spreads κsk
t are projected into the unit interval through construction of a

Bernstein copula function, and differences between the copulas are then assessed using the

univariate CVM test statistic given by equation (C.9). Without loss of generality, assume κsk
t

is an N -dimensional process with N ∈ {M, D} and defined as κsk
t = (κsk

t,1, κsk
t,2, · · · , κsk

t,N)⊤.

Construction of the Bernstein copula corresponding to sampled κsk
t values begins by

generating the pseudo-observations

U sk
t,p,l = 1

1 + nk

rank(κt,p,l) (C.20)

such that processes Usk
t,l = (U sk

t,1,l, U sk
t,2,l, · · · , U sk

t,N,l) ∈ [0, 1]N are the mapping of spread

samples to the unit N -cube. Define the empirical copula Csk
t,nk

corresponding to Usk
t,l as

Csk
t,nk

(
a1

m
,
a2

m
, · · · ,

aN

m

)
= 1

nk

nk∑
l=1

I
(

U sk
t,1,l ≤ a1

m
, U sk

t,2,l ≤ a2

m
, · · · , U sk

t,N,l ≤ aN

m

)
(C.21)

with grid points selected as ap ∈ {0, 1, · · · , m} = M. For arbitrary grid-points a =

(a1, a2, · · · , aN ) ∈ MN and u ∈ [0, 1]N , let ba,m(u) be the multivariate Bernstein polynomial

ba,m(u) =
N∏

p=1

(
m

ap

)
uap

p (1 − up)m−ap (C.22)
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The Bernstein copula Bsk
t,m corresponding to spread κsk

t can then be defined as

Bsk
t,m(u) =

∑
a∈MN

Csk
t,nk

(
a1

m
,
a2

m
, · · · ,

aN

m

)
ba,m(u) (C.23)

Construction and properties of the Bernstein copula are described in further detail by

Sancetta and Satchell [2004]. Hypothesis testing using the Bernstein copula is performed by

constructing copulas Bs1
t,m(u) and Bs2

t,m(u) corresponding to spreads κs1
t and κs2

t respectively,

then assessing distributional equivalence of the two copulas using the CVM test with

corresponding test statistic as in (C.9).
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D Conditional Shocks

The stress testing formulation presented in CCIRST section 5 allows for direct formulation

of conditional shocks and stress tests. In these settings, all shocked multi-curve estimation

is preconditioned on collections of quantities generated during baseline multi-curve estima-

tion. Differences between the conditional tests and unconditional stress tests can then be

characterized in terms of their effects on the cross-curve covariance estimation and resulting

cross-curve yield estimates. Effects of conditioning on various quantities are described here.

Cointegration basis: conditioning on estimated baseline cross-curve cointegration matrix

Ĝ = ⊕D
l=2 Ĝ1l should be performed when shocks to the cross-curve system are expected

to respect its long-run equilibrium dynamics. As such, the conditioning is generally

suitable unless curves are subject to shocks severe enough to cause a regime shift in

preexisting cointegration behavior. With this conditioning, estimation of shocked cross-

curve cointegration and reversion matrices may be omitted altogether, and conditional

shocked cointegration spread processes xs
il,t are defined as

xs
il,t|Ĝ1l =

(
xs

il,1,t, · · · , xs
il,r,t

)⊤
|Ĝ1l

= (xs
il,1,t|ĝ1, · · · , xs

il,r,t|ĝr)⊤
(D.1)

where ĝk are the rows of Ĝ1l. The full shocked cointegration spread conditional on G̃ is

xs
t |G̃ = vec

(
xs

12,t|Ĝ12 : xs
13,t|Ĝ13 : · · · xs

1D,t|Ĝ1D

)
(D.2)

Covariance regression parameters: conditioning on estimated baseline covariance

regression parameters B̂j and Ψ̂j generates scenarios where only the regression covariates

are altered in cross-curve covariance estimation. It is thus a suitable conditioning choice for

low-magnitude or transient shocks with limited or temporary impact on the aggregate cross-

curve covariance structure. This conditioning modifies the shocked cross-curve covariance

structure estimation to omit computation of Bs
j and Ψs

j parameters entirely. Shocked
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conditional cross-curve covariance matrix estimates Σ̂s
j,t|(B̂j, Ψ̂j) are then computed as

Σ̂s
j,t|(B̂j, Ψ̂j) = B̂jxs

t xs⊤
t B̂s⊤

j + Ψ̂j (D.3)

DNS Residuals: conditioning shocked curve estimation on baseline cross-curve residuals

wt isolates the impact of any shocks to the a multi-curve system’s cross-curve correlation

dynamic, removing any impact applied shocks would have on within-curve covariance

structures. In describing the impact of this conditioning, it is useful to first denote by Wi,·

and W·,j the matrices

Wi,· =
(

wi,·,t1 : wi,·,t2 : · · · : wi,·,tN

)⊤

W·,j =
(

w·,j,t1 : w·,j,t2 : · · · : w·,j,tN

)⊤ (D.4)

corresponding to curve-specific and residual-specific residuals. Conditional shocked covari-

ance structure estimation is then

Ĥs
i,t|Wi,· = Ĥi,t

Σ̂s
j,t|W·,j = (B̂s

j|W·,j)xs
t xs⊤

t (B̂s
j|W·,j)⊤ + (Ψ̂s

j|W·,j)
(D.5)

where Ĥi,t are the baseline within-curve covariance matrix estimates calculated, and param-

eters B̂j|W·,j and Ψ̂j|W·,j are estimated using the EM algorithm described in appendix 4.4

with tenor-grouped residuals W·,j as inputs.

Joint quantities: jointly conditioning shocked curve estimation both Ĝ and B̂j and

Ψ̂j yields shocked conditional cointegration spreads as in equation (D.2) and conditional

shocked cross-curve covariance estimate

Σ̂s
j,t|(Ĝ, B̂j, Ψ̂j) = B̂j(xs

t |Ĝ)(xs
t |Ĝ)⊤B̂⊤

j + Ψ̂j (D.6)

This joint conditioning preserves baseline cointegration dynamics while also mitigating the

impact of shocks on the aggregate cross-curve covariance structure. Similarly, conditioning
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jointly on baseline residuals wt and estimated baseline cointegration matrix Ĝ results in

shocked within-curve covariance estimates Ĥs
i,t|Wi,· as in equation (D.5) and conditional

shocked cross-curve covariance estimates

Σ̂s
j,t|(W·,j, Ĝ) = (B̂s

j|W·,j, Ĝ)(xs
t |Ĝ)(xs

t |Ĝ)⊤(B̂j|W·,j, Ĝ)⊤ + (Ψ̂j|W·,j, Ĝ) (D.7)

where B̂j|(W·,j, Ĝ) and Ψ̂j|(W·,j, Ĝ) are estimated using the EM algorithm in section 4.4,

with residuals W·,j and covariates xs
t |Ĝ as inputs. This conditioning preserves baseline

cointegration dynamics and baseline within-curve covariances, isolating all shock impacts

to the cross-curve structure. Other joint conditionings on Ĝ, B̂j and Ψ̂j, and wt yield

ill-defined cross-curve covariance matrices or result in unchanged estimates relative to the

baseline structure, and should be avoided.
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E Extended Numerical Studies

This appendix provides additional information relevant to numerical case studies presented in

CCIRST section 6. Content includes extended descriptions of data cleaning and experimental

design, as well as additional results corresponding to the applications in CCIRST subsections

6.1 and 6.2.

E.1 Yield Curve Bootstrap Reconstruction

As shown in CCIRST table 2, significant quantities of sovereign yield data are missing or

otherwise unavailable and require reconstruction prior to use in numerical experiments.

This reconstruction is performed via the following two-stage approach.

Stage I: sporadic single-day missing yields for all available tenors τj are generated through

cubic-spline interpolation between yields of the same tenor at days immediately preceding

and following the missing yield.

Stage II: fit a static NS model on each day to obtain estimates for all missing tenors. That

is, estimate NS factors βi,t = (Li,t, Si,t, Ci,t)⊤ and shape parameter λi,t for each day using

the combined grid-search OLS approach described in appendix 4.2. Bootstrapped yields

are then calculated by multiplying the estimated latent factors against NS factor loadings

corresponding to tenors τ1 = 1 through τ10 = 360 months.

This process is repeated for each sovereign yield curve shown in table 2. Note that stage II

of this estimation procedure cannot be applied directly to the ITL and AUS raw yield data.

For those curves, the limited quantity of available short-rate data results in severe numerical

instability when estimating static daily NS fits. Substituting overnight and 90-day ITL

and AUS interbank interest rates in place of 1 and 3 month yields clamps ITL and AUS

short-rate values and guarantees numerical stability and smooth yield curve reconstructions.
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E.2 Shock Application Details

All numerical studies featured in CCIRST section 6 use the following parameter and

estimation choices. Single-curve baseline DNS parameter estimation is performed via the

combined grid-search and OLS approach outlined in appendix 4.2. Shape parameter λi,t is

selected from a grid Λ spanning 0.01 − 0.1 incrementing by 0.001. A unique λi,t is estimated

for each calendar year in which data is available. All cross-curve VAR series are constructed

using the USA curve as reference. Cointegration rank is estimated using the max eigenvalue

test at significance level α = 0.1. All cross-curve pairs display nontrivial cointegration

dynamics (cointegration rank r1l ≥ 1) in at least one year, and at least one nontrivial

cointegration relation exists in each year. Mean cointegration ranks across all windows for

cross-curve pairs fall between 0.7647 (USA-CAD) and 1.2941 (USA-GER).

Covariance regression parameters Bj and Ψj are estimated via the EM algorithm in appendix

4.4 using random Gaussian initialization as in van Jaarsveldt et al. [2024]. Iteration proceeds

until cumulative Frobenius norm differences between 10 consecutive iterations fall below

10−8 or until reaching 103 iterates. Reduced cointegration spreads x̃t are used as covariance

regression inputs. After estimation of all regression parameters B̂j and Ψ̂j, covariate series

x̃t are smoothed using natural cubic splines with knot points approximately every quarter

(62 trading days) to obtain smoothed covariate series x̃CS
t . Cross-curve covariance matrices

are then estimated as

Σ̂j,t = Ψ̂j + B̂j,tx̃CS
t (x̃CS

t )⊤B̂⊤
j,t (E.1)

Static shocks are generated through process S+
i,Ik

= {∆+
i,t}t∈Ik

with disturbances

∆+
i,t =

(
03 : · · · : 03 : δL

i : 03 : · · · : 03
)
I(t ∈ Ik) (E.2)

where δL
i = (δL

i , 0, 0)⊤ and Ik indicates the kth yearly window (here for k ∈ {1, 2, · · · , 7}

for years 2012 - 2018). Shock magnitude δL
i is selected as the 99.9th percentile daily change
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in baseline estimated yields for curve i. Similarly, cumulative 200 BPS USA and 100 BPS

JPN level shocks are generated using shocks S∪
i,Ik

= {∆∪
i,t}t∈Ik

with disturbances

∆∪
i,t =

(
03 : · · · : 03 : δL

i,t : 03 : · · · : 03
)
I(t ∈ Ik) (E.3)

In this construction, δL
i,t = (δL

i,t, 0, 0)⊤ feature a progressively increasing δL
i,t value. That is, for

times {t∗
1, t∗

2, · · · , t∗
Nk

} ⊂ Ik, shock components are of the form δL
i,t = nδL

i,t∗
1

for t ∈ [t∗
n, t∗

n+1).

Initial shock magnitude δL
i,t∗

1
is selected as the 95th percentile daily change in estimated

baseline yields for curve i. All shocked multi-curve estimation is performed conditional on

baseline cointegration matrices Ĝ as outlined in appendix D.

E.3 Multi-Curve Shock Application

The stress testing framework presented in CCIRST allows for multi-curve cascade shocks in

addition to the single-curve shocks previously described. An extended numerical example

discussing construction and application of these multi-curve cascades (MCCs) is presented

here. In this example, an initial shock is applied to the USA reference curve, and then

after short delay, a collection of shocks are simultaneously applied to the GBR, JPN, and

CAD curves. This shock is formally constructed through appropriate specification of shock

process process SMCC
Ik

= {∆MCC
t }t∈Ik

with disturbances

∆MCC
t =

(
δL

1 I(t > tc1) : δL
2 I(t > tc2) : · · · : δL

DI(t > tcD
)
)
I(t ∈ Ik) (E.4)

for start times tc1 , tc2 , · · · , tcD
, and with curve-specific shocks δL

i . The initial shock to

the USA curve is at the 90th percentile daily change in USA yields, while shocks to the

remaining curves are at 80th percentile daily changes in their respective yields. Marginal

curve shocks are applied beginning at the 62nd trading day (approximately the start of the

second quarter) of each annual window from 2012 - 2018.

Effects of this MCC shock are summarized in the tables of appendix ??. The MCC is shown

to cause significant destabilization relative to 99.9th percentile single-curve shocks in the
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USA, GBR, and CAD curves. The MCC also produces extreme daily fluctuations exceeding

those generated by any other shock studied (as shown in, for example, the 99th percentile

absolute differences in ITL and GER 12 month yields).

E.4 Hypothesis Testing Details

Hypothesis tests performed in CCIRST section 6.2 require repeated resampling of both

shocked and baseline variance stabilized yields to generate sufficient sample sizes for

hypothesis testing. For baseline curves, these samples can be generated using the fact that

OLS-style DNS parameter estimates β̂i,t as described in section are asymptotically Gaussian

with variance

Var
[
β̂i,t

]
= σ̂2

i,t

(
Φ⊤

i,tΦi,t

)−1
(E.5)

where Φi,t are fixed DNS factor loading matrices corresponding to specific λi,t values, and

σ̂2
i,t are diagonal sample variance estimates computed as

σ̂2
i,t = (Yi,t − Φi,tβ̂i,t)⊤(Yi,t − Φi,tβ̂i,t)

NM − 3 (E.6)

for observed yields Yi,t. Baseline DNS parameter sample series are then generated by

sampling from multivariate Gaussian distributions with variance as in equation (E.5)

centered around point estimates β̂i,t for each time t. This structure allows for generation of

arbitrarily many noisy (baseline) multi-curve samples exhibiting slight random fluctuations

in both DNS parameter values and cross-curve covariance structures. It is assumed that

both the cointegration basis and covariance regression parameters of these noisy multi-curve

samples are unchanged from the initial baseline multi-curve estimates used in sample

generation.

Shocked yield curve estimates are generated by randomly sampling shocks from narrow

uniform distributions centered around true shock magnitudes of interest. That is, to test

37



significance of a scalar or additive shock process Sk = {∆t}t∈T , we sample shock components

δβ
i,n as

δβ
i,n ∼ Unif

(
δβ

i − ω, δβ
i + ω

)
(E.7)

where δi are non-identity entries of ∆t. Constant ω is selected such that the upper and

lower bounds of resampled shock components δβ
i,n lie outside the 99.9% confidence interval

centered around baseline curve point estimates β̂i,t as determined by the variance in equation

(E.5). This approach allows for straightforward generation of shocked yields that on average

correspond to the target shock magnitude of interest. All tests performed in CCIRST

section 6.2 are performed at a time horizon of t = 250 days following application of shocks,

and using sample sizes of 20 baseline and 20 shocked curves.
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F Numerical Results

F.1 Shocked Yield Data

Tables featured here contain daily absolute yield changes for the multi-yield curve system

subject to 99.9th percentile static USA and JPN shocks and cumulative 200 BPS USA and

100 BPS JPN shocks as described in CCIRST section 6.1. Tables also contain daily absolute

yield changes for curves subject to the MCC shock described in appendix E.3. Bold values

indicate the maximum shift for a particular tenor and quantile.

Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0378 0.0939 0.0436 0.1666 0.0466 0.2517
95% 0.0541 0.1330 0.0603 0.2407 0.0660 0.3703
99% 0.0947 0.2440 0.1348 0.4859 0.1413 0.8155

1 Year
90% 0.0473 0.1436 0.0923 0.2075 0.0558 0.1626
95% 0.0658 0.2031 0.1501 0.3058 0.0855 0.2274
99% 0.1640 0.5253 0.2994 0.7138 0.3387 0.5362

5 Year
90% 0.0647 0.1386 0.1025 0.2095 0.0851 0.2119
95% 0.0847 0.1878 0.1774 0.3492 0.1252 0.2888
99% 0.1460 0.3193 0.5692 0.8779 0.2441 0.6338

20 Year
90% 0.0697 0.1324 0.0807 0.1710 0.0793 0.1638
95% 0.0862 0.1694 0.1176 0.2605 0.0969 0.2230
99% 0.1392 0.2861 0.6320 0.5682 0.1805 0.5794

Table 1: Daily Yield Absolute Differences: USA
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0496 0.0830 0.0732 0.1288 0.0883 0.1817
95% 0.0841 0.1475 0.1191 0.1998 0.1419 0.2675
99% 0.1618 0.4301 0.3078 0.4019 0.4004 0.5855

1 Year
90% 0.0611 0.1059 0.0878 0.1459 0.0802 0.1153
95% 0.0959 0.1847 0.1178 0.2342 0.1272 0.2007
99% 0.2607 0.5932 0.2845 0.4624 0.3225 0.4322

5 Year
90% 0.0674 0.0905 0.0822 0.0938 0.0805 0.1437
95% 0.0879 0.1207 0.1039 0.1289 0.1144 0.2042
99% 0.1274 0.2345 0.2806 0.2940 0.2373 0.4987

20 Year
90% 0.0684 0.0799 0.0742 0.0882 0.0789 0.1290
95% 0.0866 0.1021 0.0953 0.1206 0.1031 0.1814
99% 0.1227 0.1739 0.2146 0.2473 0.2098 0.4369

Table 2: Daily Yield Absolute Differences: GBR
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0319 0.0641 0.1054 0.0671 0.1406 0.1121
95% 0.0511 0.0912 0.1662 0.1212 0.2218 0.1635
99% 0.0919 0.1878 0.8291 0.3714 0.4267 0.2900

1 Year
90% 0.0230 0.0517 0.1361 0.0428 0.1435 0.0749
95% 0.0365 0.0790 0.2089 0.0705 0.2159 0.1201
99% 0.0725 0.1448 0.8984 0.2362 0.4585 0.2421

5 Year
90% 0.0383 0.0515 0.1678 0.0620 0.1664 0.0647
95% 0.0516 0.0686 0.2647 0.0948 0.2834 0.0924
99% 0.0809 0.1164 0.6037 0.1922 0.6123 0.1757

20 Year
90% 0.0391 0.0529 0.1153 0.0805 0.1252 0.0857
95% 0.0505 0.0706 0.1554 0.1360 0.1686 0.1149
99% 0.0817 0.1193 0.4028 0.2817 0.4066 0.2203

Table 3: Daily Yield Absolute Differences: JPN
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0318 0.0906 0.0742 0.0590 0.0405 0.1643
95% 0.0427 0.1535 0.1457 0.0973 0.0550 0.2610
99% 0.0718 0.3244 0.4438 0.2963 0.1183 0.6544

1 Year
90% 0.0313 0.0992 0.0947 0.0792 0.0527 0.0977
95% 0.0407 0.1539 0.2132 0.1231 0.0706 0.1402
99% 0.0601 0.3544 0.7939 0.3424 0.1342 0.3718

5 Year
90% 0.0564 0.0687 0.0692 0.0693 0.0577 0.1260
95% 0.0707 0.0865 0.0957 0.0867 0.0737 0.1598
99% 0.0935 0.1519 0.3031 0.1565 0.1189 0.3228

20 Year
90% 0.0627 0.0670 0.0728 0.0752 0.0694 0.1049
95% 0.0777 0.0830 0.0991 0.0957 0.0861 0.1320
99% 0.1090 0.1148 0.3254 0.1413 0.1253 0.1901

Table 4: Daily Yield Absolute Differences: CAD
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0439 0.0947 0.1204 0.0947 0.1754 0.0873
95% 0.0618 0.1454 0.1783 0.2587 0.2951 0.1328
99% 0.1180 0.3246 0.3190 1.0745 0.7608 0.2777

1 Year
90% 0.0384 0.0921 0.1228 0.0842 0.1072 0.0953
95% 0.0518 0.1386 0.1695 0.2257 0.2071 0.1485
99% 0.0935 0.3182 0.3041 1.0110 0.5413 0.4678

5 Year
90% 0.0533 0.0644 0.0639 0.0709 0.0613 0.0614
95% 0.0664 0.0880 0.0873 0.0972 0.0803 0.0780
99% 0.1031 0.1478 0.1642 0.2004 0.1304 0.1626

20 Year
90% 0.0674 0.0746 0.0713 0.0874 0.0759 0.0727
95% 0.0859 0.0953 0.0911 0.1178 0.0977 0.0921
99% 0.1340 0.1481 0.1441 0.1910 0.1554 0.1488

Table 5: Daily Yield Absolute Differences: GER
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0439 0.1218 0.1357 0.1092 0.0977 0.0765
95% 0.0618 0.2294 0.2052 0.1963 0.1549 0.1167
99% 0.1180 0.4038 0.4094 0.5173 0.4248 0.3109

1 Year
90% 0.0478 0.1138 0.1771 0.1322 0.1206 0.1012
95% 0.0671 0.1866 0.2878 0.2198 0.1753 0.1701
99% 0.1269 0.4850 0.5238 0.4950 0.3377 0.6587

5 Year
90% 0.0521 0.0636 0.0646 0.0683 0.0640 0.0589
95% 0.0683 0.0858 0.0869 0.0916 0.0852 0.0784
99% 0.1107 0.1598 0.1748 0.1683 0.1768 0.1894

20 Year
90% 0.0618 0.0653 0.0786 0.0795 0.0825 0.0725
95% 0.0796 0.0835 0.1055 0.1096 0.1157 0.0932
99% 0.1260 0.1453 0.1776 0.1815 0.2309 0.1576

Table 6: Daily Yield Absolute Differences: FRA
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0815 0.1238 0.1068 0.1430 0.1328 0.1284
95% 0.1243 0.1935 0.1640 0.2719 0.1884 0.1952
99% 0.2527 0.3465 0.3386 0.7000 0.3633 0.5381

1 Year
90% 0.0910 0.2440 0.2024 0.2476 0.1400 0.2727
95% 0.1329 0.3603 0.2987 0.4078 0.2345 0.4274
99% 0.2605 0.6962 0.5840 0.8937 0.5527 1.1870

5 Year
90% 0.1877 0.1753 0.2115 0.1893 0.1707 0.1309
95% 0.3505 0.2704 0.3264 0.3393 0.2629 0.1791
99% 0.9036 0.5581 0.6362 0.7534 0.6198 0.3140

20 Year
90% 0.1242 0.1794 0.1359 0.1656 0.1244 0.1514
95% 0.1830 0.2501 0.1881 0.2533 0.1714 0.2117
99% 0.3128 0.4712 0.3456 0.5368 0.3235 0.4099

Table 7: Daily Yield Absolute Differences: ITL
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Quantile Baseline USA 99P JPN 99P USA BPS JPN BPS Cascade
3 Month

90% 0.0461 0.1407 0.0819 0.1517 0.1084 0.1223
95% 0.0611 0.3057 0.1139 0.2873 0.1811 0.2436
99% 0.1447 0.7465 0.2052 0.7368 0.3611 1.0626

1 Year
90% 0.0865 0.1635 0.1553 0.1982 0.1368 0.1624
95% 0.1172 0.3803 0.2672 0.4016 0.2063 0.3630
99% 0.1831 1.0928 0.4948 1.1748 0.4392 1.8827

5 Year
90% 0.0911 0.1092 0.1294 0.1228 0.1113 0.1099
95% 0.1266 0.1365 0.2004 0.1770 0.1526 0.1467
99% 0.1914 0.2238 0.4683 0.3999 0.2949 0.2890

20 Year
90% 0.1108 0.1261 0.1312 0.1746 0.1318 0.1216
95% 0.1405 0.1628 0.1724 0.2761 0.1786 0.1514
99% 0.2389 0.3093 0.3935 0.4838 0.3530 0.2730

Table 8: Daily Yield Absolute Differences: AUS
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F.2 Additional Shock Visualizations

Plots shown here visualize effects of single-curve shocks summarized in tables 5 - 8.

Figure 1: Daily yield changes for baseline cross-curve stabilized yields and cross-curve
yields after application of 99.9th percentile daily shocks to respective USA and JPN curves.
USA-99P and JPN-99P shocks correspond to shocks of magnitude equal to the 99.9th
percentile daily yield change across all USA and JPN tenors applied to the USA and JPN
curves respectively. Shown here for GER, FRA, ITL, and AUS curves.

47



Figure 2: Daily yield changes for baseline cross-curve stabilized yields and cross-curve
stabilized yields after application of single-curve cascade shocks cumulating in a 200 BPS
upward shift in the USA curve level and a 100 BPS upward shift in the JPN curve level.
Shown here for GER, FRA, ITL, and AUS curves. Seven extreme daily shift values between
3% and 4.5% for the GER 3 and 12 month tenors and one extreme point between 3% and
3.5% for the AUS 3 month tenor are not displayed; these extreme shifts represent less than
0.001% of the data.
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F.3 Hypothesis Test Results

Tables featured here contain all hypothesis test results from evaluation of 10 year - 2 year

(10Y2Y) univariate spreads and full multivariate spreads for baseline yield curves and

shocked yield curves as described by CCIRST subsection 6.2.

Spread 1 Spread 2 t-test KS-test CVM-test
JPN-BL JPN-S1 0.0006 0.0000 0.0000
JPN-BL JPN-S2 0.0000 0.0000 0.0000
JPN-S1 JPN-S2 0.0000 0.0000 0.0000
CAD-BL CAD-S1 0.0000 0.0000 0.0000
CAD-BL CAD-S2 0.0280 0.0003 0.0007
CAD-S1 CAD-S2 0.0000 0.0000 0.0000
FRA-BL FRA-S1 0.0003 0.0000 0.0000
FRA-BL FRA-S2 0.0000 0.0000 0.0000
FRA-S1 FRA-S2 0.0149 0.0123 0.0057
ITL-BL ITL-S1 0.0000 0.0000 0.0000
ITL-BL ITL-S2 0.0000 0.0000 0.0000
ITL-S1 ITL-S2 0.0207 0.0335 0.0232
AUS-BL AUS-S1 0.0327 0.0000 0.0000
AUS-BL AUS-S2 0.0000 0.0000 0.0000
AUS-S1 AUS-S2 0.0000 0.0000 0.0000

Table 9: Shock effects on univariate 10YR-2YR yield spreads for JPN, CAD, FRA, ITL,
and AUS curves. BL, S1, and S2 are used to indicate baseline, 90th percentile USA, and
90th percentile JPN shocks. All test columns contain corresponding p-values. Zeros indicate
p-values below 10−4. CVM test statistic computed via simulation with 104 iterations.
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Spread 1 Spread 2 Hotelling T 2 2S CM BC-CVM
GER BL GER S1 0.0000 0.0000 0.5440
GER BL GER S2 0.0000 0.0000 0.9840
GER S1 GER S2 0.0000 0.0000 0.3090
FRA BL FRA S1 0.0000 0.0000 0.0270
FRA BL FRA S2 0.0000 0.0000 0.8800
FRA S1 FRA S2 0.0000 0.0000 0.0320
ITL BL ITL S1 0.0000 0.0000 0.0020
ITL BL ITL S2 0.0000 0.0000 0.0090
ITL S1 ITL S2 0.0000 > 0.0010 0.6560
AUS BL AUS S1 0.0000 0.0000 0.9855
AUS BL AUS S2 0.0000 > 0.0001 0.0815
AUS S1 AUS S2 0.0000 0.0000 0.0810

Table 10: Shock effect comparisons over curve-specific term structures for GER, FRA, ITL,
and AUS curves. BL, S1, and S2 are used to indicate baseline, 90th percentile USA, and
90th percentile JPN shocks. 2S CM and BC-CVM tests refer to two-sample covariance
matrix and Bernstein copula-CVM tests. All test columns contain corresponding p-values.
Zeros indicate p-values below 10−4. 2S CM test yields approximate lower bound rather than
exact p-value.
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G Additional Plots and Figures

Figures shown below correspond to reconstructions generated for use in CCIRST case

studies and numerical experiments. All yield surfaces are reconstructed using the two-stage

bootstrapping procedure outlined in appendix E.1. Static monthly overnight and 3-month

interbank rates omitted in visualization of observed ITL and AUS yields.

(a) GBR Observed Yields (b) GBR Bootstrapped Yields

(c) JPN Observed Yields (d) JPN Bootstrapped Yields

Figure 3: Observed and reconstructed yield surfaces: GBR and JPN (a - d).
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(e) CAD Observed Yields (f) CAD Bootstrapped Yields

(g) GER Observed Yields (h) GER Bootstrapped Yields

Figure 3: Observed and reconstructed yield surfaces: CAD, GER (e - h)
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(i) FRA Observed Yields (j) FRA Bootstrapped Yields

(k) ITL Observed Yields (l) ITL Bootstrapped Yields

(m) AUS Observed Yields (n) AUS Bootstrapped Yields

Figure 3: Observed and reconstructed yield surfaces: FRA, ITL, and AUS (g - n).
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