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Introduction to Machine Learning

What is Machine Learning?

Machine Learning (ML) is the field focusing on the development of algorithms, able to achieve a
certain task (such as recognition, prediction, etc.). The algorithm implements a mathematical
model with unknown parameters, which should be learnt on the data.

Formal definition by Tom Mitchell:
A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

Examples

■ Search engines (e.g. Google)

■ Recommender systems (e.g. Netflix)

■ Automatic translation (e.g. Google
Translate)

■ Speech understanding (e.g. Siri, Alexa)

■ Game playing (e.g. AlphaGo)

■ Personalized medicine
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Introduction to Machine Learning
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Introduction to Machine Learning
How to turn these ML models into reliable tool for audiological care?

• Reproducibility. Conclusion I draw today need to hold up
tomorrow.

• Reliability. Users need to understand how the model make
prediction.

• Transparency. Users needs to check for validity of the results
given the assumptions.

• Avoid Implicit Bias. Users need to be able to check whether the
model does not learn biases.

• Interpretability. Users need to interpret model decisions on a
local and global level.

• Coverage. Users need to be able to compute their predictions
confidence.

• Discovery. Users needs to distil insights/new knowledge learnt.
• Parsimony. Users need to ensure that the model adheres to the

principle of parsimony, maintaining simplicity with a minimal
number of parameters.

• Expert Opinion. Users need to validate results based on experts’
opinion.

Data

Reproducible 
discoveries?        

Reliable prdictions?
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Motivation & Research Questions
Data: 24,072 adults, with symmetric hearing loss , age range between 40 to 90 (French Amplifon
Database) for which we have: Audiogram, Speech-in-quiet, Speech-in-noise.

We partition this data set according to the Pure Tone Average (PTA) categories

Hearing Loss Category Definition

Degree of hearing loss PTA range (dB HL)

Slight 16 to 25
Mild 26 to 40

Moderate 41 to 55
Moderately severe 56 to 70

Severe 71 to 90
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Research Question 1) By considering the PTA categories, can we quantify how the audiogram and
the speech tests characterise these hearing loss categories with ML solutions?
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Motivation & Research Questions
If you one adds age grouping, then:
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Motivation & Research Questions
If you one looks ad the distribution over age of the left audiogram, then:
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Motivation & Research Questions
If you one looks ad the distribution over age of the speech tests, then:
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Motivation & Research Questions

If we observe these plots, these represent a complex dataset characterised by several parameters as age,
individual response to pure tone, individual response to speech (in quiet and in noise) corresponding to a more
challenging scenario.
We put ourself in the perspective of classification, opposite to the one of regression.
What are standard practices in ML when such a complex dataset is analysed? Talk Goals.

1 Data Visualisation. Talk Goal 1. Understanding how to visualise high dimensional data in lower
dimensional spaces.

2 Feature Design. Talk Goal 2. Understanding the concept of feature map and how to design features that
are 1) interpretable, 2) parsimonious, 3) in univariate and multivariate spaces.

3 Feature Selection. Talk Goal 3. Understanding how to significantly select features carrying a statistical
meaning without overfitting.

Research Question 2) Is there a value in analysing data using (non-linear) feature maps, especially in the
context of statistical or machine learning methods, as opposed to working directly on raw data?
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Methods

1 Data Visualisation. Talk Goal 1
A standard practice in ML is to first look at the data set, particularly when the number of dimensions
(i.e. the number of attributes/input variables available) is big.

Which tools are available for data visualisation?

This task corresponds to applying a dimensionality reduction technique such as Principal Component Analysis
(PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection,
Multidimensional Scaling, kernel PCA, Linear Discriminant Analysis, Factor Analysis, ...

These techniques vary in terms of
• assumptions on the underlying data
• computational complexity
• interpretability
• ability to capture different types of data structures
• captured information and output

The choice of dimensionality reduction technique depends on the specific characteristics of the dataset and the
objectives of the analysis.
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Methods
We selected the t-Distributed Stochastic Neighbor Embedding (t-SNE), which converts a high-dimensional
data set S = {x1, x2, . . . , xn} into a two- or three-dimensional data set S̃ = {x̃1, x̃2, . . . , x̃n} that is easier to
observe. It is particularly effective when data are affected by complex structures such as non-stationary and
non-linear contents.

The algorithm

1 t-SNE models the Euclidean distance between two high-dimensional xi and xj as the joint probabilities pij

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp

(
−∥xi − xk∥2/2σ2

i

) pi|i = 0 pij =
pj|i + pi|j

2N

2 t-SNE measures the similarity between two low-dimensional x̃i and x̃j as:

qij =

(
1 + ∥x̃i − x̃j∥2)−1∑

k ̸=l
(
1 + ∥x̃k − x̃l∥2

)−1 qii = 0.

3 The identification of the points in the low dimension S̃ is given by minimising the Kullback-Leibler
divergence between the two joint distributions P and Q:

C = KL(P||Q) =
∑

i

∑
j

pij log
pij

qij
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Methods
2 Feature Design. Talk Goal 2

A second standard practice in ML corresponds to Feature Design or Feature Engineering or Feature
Extraction.
This is process of transforming the input data S = {x1, . . . , xN} to minimise Type I Error and Type II Error tp
provide clear discrimination between classes. It enables one to

• capture domain knowledge (e.g., periodicity or relationships between features).
• express non-linear relationships using linear models.
• encode non-numeric features to be used as inputs to models.

A Classification Example
Let y be the true class label of an instance, with y = 1 for positive y = 0 for negative classes. Our model predicts
ŷ , where ŷ = 1 is a positive prediction and ŷ = 0 a negative prediction. The confusion matrix is given as

Predicted Positive (ŷ = 1) Predicted Negative (ŷ = 0)

Actual Positive (y = 1) True Positive (TP) False Negative (FN)
Actual Negative (y = 0) False Positive (FP) True Negative (TN)

Type I Error: or false positive, occurs when the model incorrectly predicts a positive class (FP).
Type II Error: or false negative, occurs when the model incorrectly predicts a negative class (FN).
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Methods
Our initial suggestions

Features Design by Statistical Tests

Feature Test H0 H1 Test Statistic Distribution

Mean T-test µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d T =

(
X̄ (g)

d −X̄ (h)
d

)
S2

p

√
1

ng
+ 1

nh

Student’s t

Mean Welch T-test µ
(g)
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(h)
d µ

(g)
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(h)
d T =

(
X̄ (g)

d −X̄ (h)
d
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S2(g)
d
ng

+
S2(h)

d
nh

Student’s t

Variance Variance σ2(g)
d = σ2(h)

d σ2(g)
d ̸= σ2(h)

d F =
S2(g)

d

S2(h)
d

Fisher–Snedecor

Ratio

Distr. Kolmogorov F (g)
d (x) = F (h)

d (x) F (g)
d (x) ̸= F (h)

d (x) D = supx

∣∣∣F̂ (g)
d (x)− F̂ (h)

d (x)
∣∣∣ Free

Smirnov

Copula Cg = Ch Cg ̸= Ch Eng ,nh =
Ĉg−Ĉh√

1
ng

+ 1
nh

Free
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Methods
3 Feature Selection. Talk Goal 3

Feature Selection Procedure.

1 Consider groups g = Slight and h = Mild and select the input data attribute d = f125.
2 Take the feature Mean and perform the T-test following the distribution Student’s t.
3 Is the p-value significant?
4 Yes. Retain this feature and compute the sample mean estimate of input data attribute d = f125 for each

of the groups (i.e. Slight, Mild, Moderate, Moderately severe, Severe) so to have each group well
represented in the feature space. No. Discard this feature for the input data attribute d = f125.

5 Repeat this procedure for each input data attribute d , each statistical test and each pairwise contrasts of
the PTA categories.

This process is equivalent to formulating a map φ(·), which can be defined as follows:

φ : Rd → Rd′
, φ(xi ) = zi

where xi ∈ Rd is the original input vector with d = 23 features and zi ∈ Rd′
is the transformed feature vector in

the new feature space of dimension d ′.

We formulated φ(·) through pairwise contrasts of each audiological test, between the PTA categories.
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Results

Our Application:
In our dataset, the input data matrix denoted as XN×d corresponds do the audiogram for the two
ears and the two speech tests, therefore xi ∈ Rd , with d = 23 and N = 24, 072.

We formulated φ(·) through pairwise contrasts of each audiological tests, between the PTA
categories.

The contrasts are performed through the use of several statistical tests which are interpretable,
parsimonious, robust to unbalanced datasets, transparent and provide a direct ranking of the
feature based on the p-values.

We are going to observe steps 1 , 2 and 3 for each of the extracted features and compare them
to the same steps applied to the raw data.
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Results
1 Data Visualisation. Talk Goal 1

Applying t-SNE to the left audiogram:

ID L_125 ... L_8000

1 20 ... 40

2 40 ... 50

... ... ... ...

... ... ... ...

24072 30 ... 30

Left Audiogram

t-SNE

K-means results:

FPR = FP
FP+TN = 0.4

FNR = FN
FN+TP = 0.7
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Results
1 Data Visualisation. Talk Goal 1

Applying t-SNE to the speech tests:

ID SRT_Q SRT_N

1 3.6 4.7

2 7.8 5.3

... ... ...

... ... ...

24072 3.4 9.4

t-SNE

Speech Tests

ID L_125 ... L_8000 R_125 ... R_8000 SRT_Q SRT_NAGE HL

K-means results:

FPR = FP
FP+TN = 0.37

FNR = FN
FN+TP = 0.58
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Conclusions

• ML tools must be reliable tools in audiological care practices
• Such reliability property is induced through the model formulation and its properties which we

have above discussed
• Complex datasets should be carefully analysed and explored through several standard ML

practices
• The concept of feature engineering is highly precious and should be further explored in

audiology for the purpose of auditory profiling
• Interpretation, parsimony and expert opinion should always be sought when ML is applied in

this area to provide a better patient care
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