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Université Paris Cité
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ABSTRACT
Mapping multivariate continuous health measurements to discrete diagnostic or disease severity cat-
egories presents a persistent challenge in clinical practice, particularly with the increasing automa-
tion of diagnostics and the push toward standardized, evidence-based decision-making. We propose
a three-stage statistical framework to address this challenge in a principled and generalizable manner.
The methodology requires access to patient samples that include multivariate diagnostic test results
alongside expert-assessed disease severity classifications, including the possibility of no disease. In
the first stage, diagnostic tests are selected based on clinical focus, yielding a multivariate profile of
physiological responses in the relevant diagnostic space. In the second stage, we transform these test
responses into an abstract feature space through: (1) feature construction, (2) statistical evaluation
and ranking of each feature’s discriminatory power using hypothesis testing, and (3) bootstrapping
to address class imbalance across disease severity categories and improve generalization. In the
third stage, we learn a partitioning function from the feature space to discrete diagnostic or severity
categories. This mapping can then be applied to new patients to support systematic, replicable dis-
ease classification. We illustrate this framework using audiological diagnostics, where hearing-loss
severity categorization relies on combining pure-tone audiogram thresholds with speech-recognition
scores. This domain, characterized by complex interdependencies between measurements, offers a
compelling real-world test case for the framework’s accuracy and utility. Overall, this approach
offers a standardized, data-driven solution for translating multivariate diagnostic information into
clinically actionable categories.

Keywords Feature Engineering | Statistical Tests | Copula Function | Machine Learning | Bootstrapping | Clustering
†These authors contributed equally to this work.



1 Introduction

A fundamental challenge in medical diagnostics lies in translating continuous biological variation into discrete clin-
ical categories while preserving crucial information about underlying functional relationships. This paper addresses
this challenge by developing a novel statistical framework that transforms the diagnostic assignment problem itself
into a statistical decision process. As such, this work focuses on developing a methodology that accurately assigns
multivariate diagnostic test results to discrete disease severity or treatment categories that can help address this major
challenge across clinical practice. This difficulty is amplified by the move toward automated diagnostics and the push
for standardized, statistically verifiable decision-making. Mapping diagnostic outputs to disease categories is complex
and often cannot be expressed in closed form, even by clinical experts.

In this work, we address this challenge by reframing it as a three-stage multivariate statistical decision process. Our
method requires a sample of patient diagnostics, including typical test results and expert-labeled disease severity
assessments, which may also indicate no disease.

First, diagnostic screenings produce a multivariate set of physiological responses for a specific condition. Second, we
transform these outputs into an abstract feature space through (1) feature construction, (2) feature ranking based on
hypothesis testing for discriminatory power, and (3) bootstrapping to balance sample sizes across severity categories.

Finally, we learn a partitioning map from feature space to discrete disease categories, enabling systematic, automated
assignment for new patients. This framework aims to standardize and improve the reliability of mapping diagnostic
data to disease severity.

A detailed real data case study will be undertaken using hearing loss assessment as a motivating example. This
clinical domain affects approximately 430 million individuals requiring rehabilitation [1], with projections reaching
700 million by 2050 [2, 3].

The tension between continuous measurements and discrete diagnostic categories has been extensively studied [4,
5], particularly in medical contexts where nuanced biological variation must inform actionable clinical decisions.
While traditional approaches often rely on threshold-based categorization [6, 7], such methods struggle to capture
both phenotype variation [8, 9] and functional outcomes [10, 11, 12] while maintaining clinical utility.

Among medical domains, hearing assessment offers a particularly clear illustration of this tension between continuous
and discrete measures. In this field, different measurement types capture complementary aspects of auditory func-
tion. Pure Tone Average (PTA) provides a basic map of hearing sensitivity by averaging thresholds at key speech
frequencies (typically 500, 1000, 2000, and 4000 Hz), naturally aligning with the discrete severity categories used in
clinical practice and our statistical framework. However, comprehensive auditory function encompasses not just sound
detection but speech comprehension, particularly in challenging environments. This broader functionality is captured
through two key speech recognition measures. The Speech Reception Threshold in quiet (SRTQ) measures the in-
crease in decibels (dB) above normal threshold needed for 50% speech recognition under optimal conditions (distinct
from the hearing thresholds measured in audiograms). The Speech Recognition Threshold in noise (SRTN ) assesses
speech understanding in background noise, providing suprathreshold information beyond audibility. SRTN indicates
the signal-to-noise ratio (SNR) required for 50% intelligibility. The relationship between these measurements reveals
complex patterns that resist simple categorization [13, 14], suggesting the need for a more sophisticated statistical
approach to classification [15, 16].

The combination of multiple measurement types with complex interdependencies [17, 18] makes hearing assessment
an ideal context for developing generalizable statistical methodology. The challenges encountered here - integrating
continuous and discrete measures while preserving clinical utility - mirror those found across medical diagnostics. By
transforming these measurements into a space of statistical contrasts, we can better capture the underlying structure
of hearing loss while maintaining the clinical utility of discrete categories. This approach addresses fundamental
challenges in medical classification that extend beyond audiology to any domain where continuous biological variation
must inform discrete clinical decisions.

Traditional approaches to medical classification have relied primarily on threshold-based categorization [19], which
fundamentally limits their ability to capture complex measurement structures. While advances in cut-point determina-
tion [20, 21] and maximally selected statistics [22] have improved these methods, they remain constrained by working
with raw measurements rather than transformed features.

The challenge in medical classification, particularly evident in hearing assessment, manifests in three critical dimen-
sions. First, multiple correlated measurements must be integrated while preserving their relationships [23, 24]. Second,
different measurement types - from cellular-level characteristics to functional outcomes [8] - must be reconciled within
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a unified framework. Third, multiple sources of uncertainty, including natural response variation and measurement
precision [25], must be properly quantified [26].

Recent methodological advances have approached these challenges from different angles. Flexible modelling ap-
proaches [27] and optimal threshold methods [28] have enhanced our understanding of clinical categories. Machine
learning methods [13, 14] have shown promise in pattern recognition, though often at the cost of interpretability.
State-space modelling [29] has successfully captured complex dynamics between audiological measurements, while
manifold learning approaches [30] have provided insights into underlying data structure.

However, a fundamental limitation persists across these approaches: they typically operate within the original mea-
surement space rather than transforming it to better capture discriminative information. Even recent statistical learning
methods [31, 32], which examine relationships between measurements under varying conditions [33, 12], focus on
finding patterns rather than fundamentally reconceptualizing the feature space itself.

This limitation suggests the need for a novel approach: transforming the classification problem into a feature space
where each dimension represents a statistical contrast between categories. Such a transformation would naturally
integrate multiple measurement types while maintaining clinical interpretability, bridging the gap between statistical
sophistication and practical utility.

Drawing upon these methodological foundations, we propose a novel statistical framework that fundamentally reimag-
ines audiological classification. Our key insight is to transform the classification problem itself into a feature space
where each dimension represents a statistical contrast between hearing loss categories, moving beyond traditional
approaches that merely combine or transform raw measurements.

The framework comprises three integrated components. First, we develop a feature engineering methodology that
maps audiological measurements into a higher-dimensional space of statistical contrasts. This mapping captures both
the discrete nature of audiometric thresholds and the continuous characteristics of speech recognition outcomes, while
naturally accommodating their complex interdependencies [34, 35]. Second, we employ complementary clustering
approaches - centroid-based and hierarchical - to identify natural groupings in this statistical feature space [36, 12].
Third, we provide comprehensive validation methods that bridge statistical rigour with clinical utility [37, 38].

Our methodology builds upon statistical learning theory [39, 40] and optimal threshold determination [28], but moves
beyond traditional categorization approaches by transforming the very nature of the feature space. By combining
bootstrap-based feature generation with clustering machine learning techniques, we maintain strong connections to
established clinical categories while revealing more nuanced patterns in hearing loss progression. To formalize this
approach, we first establish notation for describing audiological measurements and their statistical transformations.

1.1 Notation & Structure

Uppercase notation denotes random quantities such as random variables, while lowercase denotes realizations of these
variables obtained from measurements. Bold face indicates vectors, and non-bold face represents scalars or matrices.
Sub-scripts index dimensions of arrays or sets.

The following notation is used when describing audiological measurements and their analysis. Denote by XN×D the
random variables for the measurements for the complete set of data and its realisations from the observed experiments
xN×D, where N represents the total number of patients considered in the study, the overall sample size, and D the
number of attributes collected (13 in total: pure tone thresholds at 11 frequencies [125, 250, 500, 750, 1000, 2000,
4000, 6000, 8000 Hz], speech recognition thresholds in quiet and noise). The observed attributes will be mapped into
d features, where d ≥ D, obtained from the transformations of these D observed attributes. The experimental trial
data sets are taken from G = 5 different labelled groups of participants, with the g-th groups data, comprised of ng

participants each having recorded D observations from the audiological test battery, denoted by {x(g)
ng×D}, where the

j-th participant in group g has observation vector x(g)
j =

[
x
(g)
j,1 , x

(g)
j,1 , . . . , x

(g)
j,D

]
. Note that n1+n2+n3+n4+n5 = N .

Further, denote G = {1, . . . , G} the set of groups such that g ∈ G for every g. The five groups corresponded to: group
1 (g = 1) participants classified with slight hearing loss (16-25 dB HL); group 2 (g = 2) participants classified with
mild hearing loss (26-40 dB HL); group 3 (g = 3) participants classified with moderate hearing loss (41-60 dB HL);
group 4 (g = 4) participants classified with moderately severe hearing loss (61-80 dB HL); and group 5 (g = 5)
participants classified with severe hearing loss (>81 dB HL). The population mean and standard deviation for the g-th
group attribute d are denoted by µ

(g)
d and σ

(g)
d , respectively. The sample estimators for these quantities will be denoted

by µ̂
(g)
d and σ̂

(g)
d . The pooled variance estimator, will be denoted by S2

p , and F
X

(g)
d (u)

denotes the cumulative density

function (cdf) of the random variable X
(g)
d , referring to attribute d of the g-th group of participants.
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The paper structure proceeds as follows: Section 2 outlines the main methodological contributions. Section 3 details
the statistical framework, including the hypothesis tests used for feature screening, dependence and concordance mea-
sures, parametric and non-parametric bootstrapping techniques for feature engineering, and the clustering algorithms.
Section 4 presents the real-world audiological dataset and describes its properties. Section 5 provides the empirical
results, including feature selection patterns and clustering performance. Section 6 concludes with a discussion of the
implications, limitations, and potential extensions of the work.

2 Contributions

Whilst the methodology presented can be applicable as a framework for many clinical diagnostic settings, the emphasis
and illustration of the proposed framework will be made in the setting of audiological hearing testing to illustrate its
effectiveness in this manuscript. As such, this study proposes a statistical framework for enhanced classification of
hearing loss categories using multiple audiological tests. By applying specialized statistical machine learning methods
for feature extraction and inference, we identify discriminative information critical for improving diagnostic accuracy.
This addresses a key limitation of traditional assessments, which often rely solely on pure tone averages and may
overlook broader aspects of auditory function. The main contributions are summarized below:

• An unsupervised computational method is developed to classify hearing loss categories based on multiple
audiological measures. Unlike conventional approaches, it integrates diverse tests, remains robust to small
and imbalanced samples, enables interpretable feature selection, and can be adapted to both supervised and
unsupervised tasks. The method provides clinically relevant insights into markers of hearing loss.

• Strong clustering performance is demonstrated, using pure tone thresholds and speech recognition scores.
Simulations with larger sample sizes confirm the high discriminatory power of the selected features.

• The most effective audiological predictors are identified, with pure tone thresholds (500–4000 Hz) and speech
recognition in noise emerging as key contributors to differentiating hearing loss severity.

As shown in Figure 1, the framework involves three main steps. Although fundamentally unsupervised, evaluation
with labelled data validates its effectiveness.

First, feature engineering constructs a mapping φ(·) : Rd → Rd′
(d′ > d), transforming raw audiological measure-

ments into a higher-dimensional space. This is achieved via: a discriminative subspace identification through pairwise
contrasts, b feature ranking to manage dimensionality, and c feature selection with bootstrapped realizations for clus-
tering. The embedding φ(·) uses a suite of univariate and multivariate test statistics capturing frequency-specific
thresholds, speech recognition patterns, and their interactions. To address the n ≪ d′ challenge, bootstrap techniques
[41] are employed, and both parametric and non-parametric tests are assessed [42, 43, 44], improving ranking accuracy
and effective sample size.

Second, clustering algorithms are applied to the engineered feature space. K-Means and Hierarchical Clustering with
Ward’s Method [45, 46] are used due to their complementary strengths. K-Means provides efficient partitioning, while
Ward’s method captures hierarchical structure, important given class imbalance. Clustering performance is assessed
using the Silhouette score [47], which quantifies cohesion and separation across hearing loss categories, offering
insights into subcategory structure and clinical utility.

Interpretation relative to audiological attributes is discussed. Full reproducibility is ensured through the codebase
available at https://github.com/mcampi111/StatFeatEngi_Select_Clustering_Health_Severity, which
details: (1) feature engineering processes, (2) statistical test implementations, (3) clustering algorithms, and (4) eval-
uation and visualization tools.

3 Methods

This section details each component of the proposed methodology, beginning with the statistical tests that form the
foundation of our feature space, followed by the feature engineering process that transforms audiological measure-
ments into discriminative representations, and concluding with the clustering techniques that enables classification
while maintaining clinical interpretability. Our approach combines established statistical techniques with novel adapta-
tions specifically designed for audiological data structures, providing a framework that is both rigorous and practically
applicable.
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3.1 Statistical Tests

The selected hypothesis tests, used to screen for relevant features, and their test statistics are presented in Table 1.
For each test we provide brief details regarding: the quantity tested; the name of the test; the null and alternative
hypotheses (H0 and H1); the test statistic; the distribution of the statistics under the null; and degrees of freedom
where appropriate.

The objective of this stage of testing is to identify which sample quantities are significantly different and can act as
discriminatory features to distinguish between the disease state categories. In the illustration application in this work,
it will correspond to hearing loss categories (slight, mild, moderate, moderately severe, and severe; these categories
will be formally defined in Section 4) on the collected measurement variables. Table 1 presents the tests with respect
to two general groups (for simplicity and without loss of generality) as group i and group j, corresponding to one
pairwise combination between hearing loss categories (slight vs mild, slight vs moderate, etc.). These tests aim to
screen or select relevant test statistics that will eventually be used in the feature space embedding that then gets studied
in an unsupervised clustering method.

Multivariate Screening and Feature Engineering for Statistical 
Decision Making in Disease Severity Diagnostics

Feature Space Formulation Feature Ranking Feature Simulation

Use statistical tests to identify 
sample differences

Ranking the tests according to 
significance level

Bootstraping attributes presenting 
significant statistical differences

Hierarchical K-Means

Tree-based merging approach Centroid-based iterative partition&

Screened Features                       
Statistically significant disease indicators

Cluster Quality Evaluation &

FEATURE ENGINEERING

Unscreened Features                       
Complete set of  measurements

CLUSTERING

Applied to Screened and 
Unscreened Features

EVALUATION

Screened vs. Unscreened Features

Figure 1: Overview of the proposed statistical decision framework. The method consists of two main stages for trans-
forming raw audiological measurements into diagnostic groupings. (1) Feature Engineering: constructs a mapping
φ(·) : Rd → Rd′

that transforms raw measurements into a higher-dimensional space via (a) discriminative subspace
identification using pairwise contrasts, (b) feature ranking to reduce dimensionality, and (c) bootstrapped realizations
to improve sample balance. The resulting screened features are statistically selected and transformed attributes. (2)
Clustering and Evaluation: centroid-based and hierarchical clustering are applied to both screened and unscreened
features. Evaluation includes (i) comparison of cluster quality (e.g., silhouette score), (ii) assessment of alignment
with diagnostic labels, and (iii) benchmarking screened features against raw inputs. “Unscreened features” are origi-
nal audiological measurements; “screened features” are selected transformations.

The first type of test considered searches for mean sample differences for pairwise combinations and variables. We
employ both the standard t-Student mean differnce test, considering equality in variances between the tested sam-
ples, and the Welch’s t-test [48], which accommodates unequal variances between sample groups. The second class
of tests targets sample variance using the variance ratio test (F-test) [49] and the Bartlett Test [50], which assess
whether variances across different groups can be considered equal. The third class of tests examines distribution sam-
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ple differences using the Kolmogorov-Smirnov test [51], which is sensitive to differences in location and shape of
empirical distribution functions, and the Cramer-von-Mises test with different choices of weighting functions [52], in
which for appropriate choice of quantile weighting function can perform particularly well for detecting differences in
heavy-tailed distributions (see the Supplementary Appendix for detailed formulation).

Beyond univariate tests, we employ several multivariate approaches to examine interdependencies between audiolog-
ical measurements. The sparse covariance matrix comparison method [53] is particularly relevant for detecting subtle
differences between adjacent hearing loss categories where covariance differences may be sparse. Tukey’s Honestly
Significant Difference (HSD) test [54] provides controlled pairwise mean comparisons across multiple groups, while
controlling family-wise error rates. For capturing complex dependence structures between different audiological mea-
surements, we employ the Copula test [55], which evaluates equality between dependence structures while excluding
marginal behaviours (detailed mathematical formulation is provided in the Supplementary Appendix).

3.1.1 Dependence & Concordance Measures

While the copula test provides insights into the overall dependence structure, additional measures of dependence and
concordance can offer complementary information about the relationships between the medical diagnostic test array
outputs, in the application setting considered these will be audiological measurements. They capture different aspects
of the dependence structure between different measurement coordinates (tests) and remain invariant under monotone
transformations of the data [55, 56, 57].

For any pair of measurements (Xld, Ymd′), where l,m index observations and d, d′ index attributes (which could be
the same or different frequencies, or speech recognition scores) from groups i and j respectively, with corresponding
sample sizes ni and nj , we transform the data to ranks:

Uld,ni
=

rank(Xld)

ni + 1
, Vmd′,nj

=
rank(Ymd′)

nj + 1
.

We then compute several copula-based measures, which are summarized in Table 2. In each formula, the expectation
E[·] is taken over the empirical distribution of the rank-transformed variables (Uld,ni , Vmd′,nj ).

These measures collectively provide a comprehensive view of dependence structures in audiological data. The mod-
ified Kendall’s tau and Spearman’s rho offer robust assessments of general relationships, while the multivariate and
sign-based measures capture more nuanced patterns. The absolute difference and Gini-based measures are particularly
valuable for identifying discrepancies and extreme patterns, and the local Gaussian correlation provides insight into
the dependence structure via a Gaussian transform. Finally, the tail-dependence measures λL and λU highlight lower-
and upper-tail co-movements that can be especially relevant for extremes in hearing measurements.

To understand the complexity of these dependency measures, we provided a visualization of different types of statisti-
cal relationships in the Supplementary Appendix (see Figure 1). In audiological datasets, hearing loss progression and
speech recognition abilities often exhibit intricate, non-linear relationships that traditional statistical methods might fail
to detect unless copula based methods are adopted beyond the simple Guassian copula setting. For instance, pure-tone
thresholds at different frequencies, speech recognition scores in quiet and noisy environments, and age-related hearing
changes can interact in complex ways—not always following simple linear correlation patterns. The figure illustrates
various dependency structures, including strong and moderate linear relationships, upper and lower tail dependencies,
nonlinear patterns, asymmetric interactions, and threshold effects. These diverse patterns are particularly relevant in
hearing assessment, where subtle interactions between different audiometric measurements can provide crucial diag-
nostic insights. By using copula-based measures like Modified Kendall’s tau, Spearman’s rho, and tail dependence
indicators, we can capture nuanced relationships that might indicate progressive hearing loss, individual variability in
hearing function, or unique audiological profiles that would be invisible to traditional statistical approaches.

Using the statistical tests above described, we performed comprehensive pairwise comparisons across all hearing loss
categories (slight vs mild, slight vs moderate, etc.) for each audiological measurement. Additionally, we conducted
aggregate comparisons across multiple categories simultaneously to capture broader patterns of discriminative power.

3.2 Feature Engineering

The proposed feature engineering approach builds upon the results of statistical significance testing, using both para-
metric and non-parametric bootstrapping techniques [58] to generate bootstrapped features for the attributes that show
discriminative power between hearing loss categories. These statistically significant differences serve as ideal candi-
dates for our feature space formulation precisely because they capture the most informative contrasts between severity
categories, providing the foundation for our statistical decision framework. When statistical tests identify signifi-
cant differences between groups for particular attributes, we apply a systematic bootstrapping procedure to generate
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Statistical Tests

Univariate Tests

Feature Test H0 H1 Test Statistic Distribution & DOF

Mean T-test µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d

T =

(
X̄

(g)
d − X̄

(h)
d

)
S2
p

√
1

ng
+ 1

nh

Student’s t,

DOF: ng + nh − 2

Mean Welch T-test µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d

T =

(
X̄

(g)
d − X̄

(h)
d

)
√

S2(g)

d
ng

+
S2(h)

d
nh

Student’s t,

DOF: Welch–Satterthwaite

Variance Variance
σ2(g)

d = σ2(h)

d σ2(g)

d ̸= σ2(h)

d

F =
S2(g)

d

S2(h)

d

Fisher–Snedecor

Ratio DOF: F(ng−1, nh−1)

Distr. Kolmogorov F
(g)
d (x) = F

(h)
d (x) F

(g)
d (x) ̸= F

(h)
d (x) D = sup

x

∣∣∣F̂ (g)
d (x) − F̂

(h)
d (x)

∣∣∣ Free

Smirnov (no DOF)

Distr. Cramer-Von F
(g)
d (x) = F

(h)
d (x) F

(g)
d (x) ̸= F

(h)
d (x) Q = ngnh

∫ ∞

−∞
w(x)

[
F̂

(g)
d (x) − F̂

(h)
d (x)

]2
dF̂

(h)
d (x) Free

Mises (no DOF)

Multivariate Tests

Feature Test H0 H1 Test Statistic Distribution & DOF

Variance Bartlett Test σ2(g)

d = σ2(h)

d σ2(g)

d ̸= σ2(h)

d T =
(N − G) ln(S2

p) −
∑G

l=1(ng − 1) ln(S2(g)

d )

1 +
(

1
3(G−1)

) [(∑G
l=1

1
ng−1

)
− 1

N−G

] Chi-Square

∀ (g, h) for at least one (g, h) χ2
(G−1)

Covariance Σg = Σh Σg ̸= Σh Mn − 4 log p + log log p Type I extreme value
(no DOF)

Tukey Tukey HSD µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d W =

max(g,h)

(
X̄

(g)
d − X̄

(g)
d

)
√

1
2

S2(g)
d

+S2(h)
d

ng,d+nh,d

Studentized range

∀ (g, h) for at least one g, h DOF: q(G, N−G)

Copula Cg = Ch Cg ̸= Ch Eng,nh
=

Ĉg − Ĉh√
1

ng
+ 1

nh

Free

(no DOF)

Table 1: Descriptions of the considered statistical tests for feature screening and selection (stage 1). The sample
estimators required for the implementation of the tests are given as follows (following the order of the introduced

tests). X̄
(g)
d , X̄

(h)
d represents the mean estimators. S2

p corresponds to the pooled variance estimator. S2(g)

d , S
2(h)
d

are the variance estimators and ng, nh the correspondent groups sample sizes. N is the total sample size. S2
d is

variance estimator for group g, ng is the sample size of the g-th group, G represents the number of groups and S2
p the

pooled variance estimator corresponding to S2
p =

∑k
l=1(nl − 1)(S2

l )/(n − k). F (g)
d (x), F

(h)
d (x) are the cumulative

distribution functions of the two groups and F̂
(g)
d (x), F̂

(h)
d (x) are the empirical cumulative distribution functions,

respectively. X̄(h)
d is larger of the means and X̄

(g)
d is smaller of the means. In the case of the Tukey test, HSD stands

for Honest Significant Difference.
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Measure Formula Description

Modified Kendall’s tau τcop = 4E[Uld,ni Vmd′,nj
]− 1 Captures overall concordance patterns; sensi-

tive to monotonic relationships across frequen-
cies.

Modified Spearman’s rho ρcop = 12E
[
Uld,ni

l − 0.5

ni

]
− 3 Rank-based correlation measure for gradual

changes in hearing function.

Multivariate Spearman’s rho ρmulti = 12E[(Uld,ni − 0.5) (Vmd′,nj
− 0.5)] Captures complex dependencies between dif-

ferent aspects of hearing function.

Sign-based association βcop = 4E
[
sign

(
(Uld,ni − 0.5) (Vmd′,nj

− 0.5)
)]

Robust measure for directional relationships,
less sensitive to outliers.

Concordance measure γcop = E[|Uld,ni − Vmd′,nj
|] Quantifies disagreement between measure-

ments across frequencies/tests.

Gini-based measure Ginialt = E[|2Uld,ni − 1| |2Vmd′,nj
− 1|] Sensitive to differences in distribution tails;

identifies extreme patterns.

Local Gaussian correlation ρlocal = cor
(
Φ−1(Uld,ni), Φ

−1(Vmd′,nj
)
)

Provides insights into dependence structure
through a Gaussian transformation.

Tail Dependence λL ≈ 1

k

∑
q∈QL

Pr
(
U ≤ F̂−1

U (q), V ≤ F̂−1
V (q)

)
q

, Approximates lower (λL) and upper (λU ) tail
dependence by averaging empirical joint tail
probabilities. Here, k = |QL| or |QU |, the
number of quantiles in each tail grid.

λU ≈ 1

k

∑
q∈QU

Pr
(
U ≥ F̂−1

U (q), V ≥ F̂−1
V (q)

)
1− q

Values > 1 indicate stronger co-occurrence in
the respective tail than under independence.

Table 2: Summary of Copula-based Dependence Measures

balanced feature sets that capture these differences while maintaining equal representation across groups. For each sig-
nificant attribute identified through statistical testing, we employ two bootstrapping methods: one parametric approach
using a Normal distribution and a second non-parametric approach. This combination allows us to generate robust fea-
ture sets while accounting for different potential underlying distributions in the audiological measurements. In this
subsection we present the different bootstrapping techniques used for the feature engineering stage of the proposed
framework.

3.2.1 Parametric and Non-Parametric Copula and Univariate Bootstrapping

An overview of the bootstrapping methodology is present for four fundamental approaches - parametric bootstrap, non-
parametric bootstrap, parametric copula bootstrap, and non-parametric copula bootstrap - with detailed insights and
theoretical foundations for copula estimation and its bootstrapping procedure provided in detail in the Supplementary
Appendix.

Bootstrap methods, introduced by [58], provide a simulation-based framework for assessing statistical accuracy. While
multiple variations exist in both parametric and non-parametric forms, the core principle remains consistent: using
resampling to estimate statistical properties when analytical solutions are impractical or collection of further samples
is infeasible, invasive, too costly or impractical. In many medical diagnostic settings, the data collected may be onerous
on the patient and expensive to collect. Furthermore, the proportion of the population with different diseases states
may be naturally imbalanced in many medical assessment settings. The combination of these factors often results in
sample sets that are used for medical diagnostic assessment that are imbalanced. This is where bootstrap methods
can be directly beneficial, and especially those that consider carefully the possible multivariate concordance structures
present in the data.

The fundamental bootstrap problem considers an i.i.d. sample X1, . . . , Xn ∼ f(x|θ) and aims to estimate the standard
error of an estimator θ̂ of θ. Traditional approaches rely on asymptotic theory to study the sampling distribution and
variance of θ̂ for large samples. Bootstrap provides an alternative through simulation: repeatedly generating samples
X∗

1 , . . . , X
∗
n ∼ f(x|θ), computing θ̂∗ for each sample, and taking the empirical standard deviation of these estimates.

However, since the true parameter θ is unknown, making direct simulation impossible, bootstrap instead generates
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samples from an estimate of the underlying distribution. For a statistic of interest T := T (X1, . . . , Xn), two main
approaches exist: a parametric approach that fits and samples from a specified probability distribution, and a non-
parametric approach that uses the empirical distribution of the observed data.

Parametric Bootstrap: In the parametric approach, we fit a model f(x|θ) to the observed data. This is called the
parametric bootstrap because the simulated data comes from a fitted parametric model f(x|θ).

Algorithm 1: Parametric Bootstrap

Input: Parametric model f(x|θ) fit to X1, . . . , Xn using an estimator θ̂∗ (for example, the MLE)
for i = 1, 2, . . . , B do

1. Simulate iid samples X∗
1 , . . . , X

∗
n ∼ f(x|θ̂)

2. Compute the statistic T ∗ := T (X∗
1 , . . . , X

∗
n) on the data X∗

1 , . . . , X
∗
n

Output: the empirical standard deviation of T ∗ across the B simulations

Non-Parametric Bootstrap: The non-parametric approach takes a different perspective: instead of assuming a para-
metric form, it estimates the true distribution using the empirical distribution of the data, which places mass 1

n at each
observed value X1, . . . , Xn. Under this approach, generating i.i.d. samples X∗

1 , . . . , X
∗
n amounts to sampling with

replacement from the original data. Note that this typically results in repeated values in the resampled data, even when
the original observations were all distinct. The procedure is as follows: This approach requires no assumptions on

Algorithm 2: Non-Parametric Bootstrap

Input: X1, . . . , Xn

for i = 1, 2, . . . , B do
1. Simulate iid samples X∗

1 , . . . , X
∗
n as n samples with replacement from original data X1, . . . , Xn

2. Compute the statistic T ∗ := T (X∗
1 , . . . , X

∗
n) on the data X∗

1 , . . . , X
∗
n

Output: the empirical standard deviation of T ∗ across the B simulations

a particular form of parametric model. An alternative approach to traditional bootstrapping methods is copula-based
bootstrapping, which allows for preserving dependence structures in multivariate data. A copula function captures the
joint dependence between variables while allowing marginal distributions to be modelled separately. This method is
particularly useful for high-dimensional data where traditional bootstrapping may not effectively preserve dependen-
cies.

Parametric Copula Bootstrap The parametric version of copula-based bootstrapping assumes that the joint distribu-
tion of (X1, . . . , Xd) can be factored through a parametric copula. In particular, we assume

FX1,...,Xd
(x1, . . . , xd) = Cθ

(
F1(x1), . . . , Fd(xd)

)
,

where Fj(·) is the marginal distribution function of Xj , and Cθ is a t-copula with parameters θ = (R, ν), comprising
the correlation matrix R and degrees of freedom ν. Let Xn×d be our data matrix of n observations and d variables.

Non-Parametric Copula Bootstrap: The non-parametric version does not assume a functional form for the copula.
Instead, one estimates a flexible Bernstein copula Ĉ(·) from the rank-transformed data

(
F̂1(xi1), . . . , F̂d(xid)

)
∈

[0, 1]d. Let Xn×d again be our data matrix.

The copula-based bootstrap methods effectively capture dependencies in multivariate data while allowing flexibility
in marginal distributions. The parametric approach benefits from the robustness of the t-copula in capturing tail
dependencies, while the non-parametric Bernstein copula offers greater flexibility without parametric assumptions.
Note that the sampling procedure for this copula is described in the Supplementary Appendix.

3.2.2 Screening-Specific Bootstrap for Feature Construction

The combination of the statistical tests combined with the application of the parametric and non-parametric bootstrap-
ping methods applied to the relevant subsets of the data being tested allows for the accurate selection and screening of
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Algorithm 3: Parametric Student-t Copula Bootstrap

Input: Multivariate data matrix Xn×d = {(xi1, . . . , xid)}ni=1; Fitted t-copula parameters θ = (R, ν); Marginal
distribution estimates F̂1, . . . , F̂d (e.g., via MLE or empirical CDFs).

for i = 1, 2, . . . , B do
1. Sample from the t-copula: Generate n independent samples

(ui1, . . . , uid) ∼ tCopula(R, ν), i = 1, . . . , n.

Each (ui1, . . . , uid) lies in [0, 1]d.

2. Structure the samples: Organize the samples into vector form

U∗
1 , . . . , U

∗
n, where each U∗

i = (ui1, . . . , uid)

3. Compute statistic of interest: Evaluate
T ∗ := T

(
U∗

1 , . . . , U
∗
n

)
.

Output: empirical distribution (or empirical moments) of T ∗ based on the B replicates.

Algorithm 4: Non-Parametric Bernstein Copula Bootstrap

Input: Multivariate data matrix Xn×d = {(xi1, . . . , xid)}ni=1; A non-parametric Bernstein copula fit Ĉ, Marginal
distribution estimates F̂1, . . . , F̂d (often empirical).

for i = 1, 2, . . . , B do
1. Estimate copula from rank-transformed data: Using (F̂j(xij))i=1,...,n, j=1,...,d, fit a Bernstein copula Ĉ to

approximate scale free dependence .

2. Sample from the estimated copula: Generate n samples

(ui1, . . . , uid) ∼ Ĉ, i = 1, . . . , n.

3. Structure the samples: Organize the samples into vector form

U∗
1 , . . . , U

∗
n, where each U∗

i = (ui1, . . . , uid)

4. Compute statistic of interest: Evaluate
T ∗ := T

(
U∗

1 , . . . , U
∗
n

)
.

Output: empirical distribution (or empirical moments) of T ∗ based on the B replicates.

discriminatory features from the diagnostic test data features. As such, the method aims to generate n′ new samples
for each group g to form an augmented feature vector that will be used in the assessment and screening.

Bootstrap Setup Remark that Xg,(dk) is the observed data for group g ∈ G and attribute dk. Tnen N ′ = 5 × n′

new samples (since we resample for all 5 groups, ensuring balanced representation) under three different bootstrap
approaches is utilised to both determine whether the contrast between some groups i and j feature(s) are statistically
significant for dk. The procedure is outlined as follows:

1. Parametric (Normal Distribution): Model Xg,(dk) as N
(
µ̂g, σ̂

2
g

)
, where (µ̂g, σ̂

2
g) are estimated from the ob-

served data (e.g., method of moments).

2. Non-Parametric: Sample n′ times with replacement directly from Xg,(dk), treating its empirical distribution
as the underlying model.

In each case, denote the newly generated samples for group g as {x∗(g)
1,(dk)

, x
∗(g)
2,(dk)

, . . . , x
∗(g)
n′,(dk)

}.

Feature Construction for Univariate Tests For each type of hypothesis test for which a statistically significant
structure was detected, we then derive a corresponding set of summary statistics as new features from the screened
data structure given as follows:
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• Mean Test (e.g., t-test): Compute bootstrapped means
{
x̄
(g)
1,(dk)

, . . . , x̄
(g)
n′,(dk)

}
for each group g ∈ G. Con-

catenate across groups to form

x̃N ′×1 =
[
x̄
(1)
1,(dk)

, . . . , x̄
(1)
n′,(dk)

, . . . , x̄
(5)
1,(dk)

, . . . , x̄
(5)
n′,(dk)

]⊤
.

• Variance Test: Compute bootstrapped variances for each group; similarly concatenate them into an N ′ × 1
vector.

x̃N ′×1 =
[
s2

(1)

1,(dk)
, . . . , s2

(1)

n′,(dk)
, . . . , s2

(5)

1,(dk)
, . . . , s2

(5)

n′,(dk)

]⊤
• Distribution Test (e.g., KS or CvM): Compute robust summary statistics, such as median, interquartile range

(IQR), and the 5th/95th percentiles, from each bootstrapped sample. Concatenate these into feature vectors
per group.

x̃N ′×4 =

[(
med(1)1,(dk)

IQR(1)
1,(dk)

p5
(1)
1,(dk)

p95
(1)
1,(dk)

)
, . . . ,

(
med(5)n′,(dk)

IQR(5)
n′,(dk)

p5
(5)
n′,(dk)

p95
(5)
n′,(dk)

)]⊤
Repeating this procedure for each significant attribute dk produces a new feature d′k. When multiple attributes are
significant, their corresponding bootstrapped statistics yield a set of new attributes {d′1, d′2, . . . }. This process is
repeated for each bootstrap method (Normal, Non-Parametric) to form three separate feature matrices.

Feature Construction for Multivariate Tests - Copula For multivariate relationships—identified, for example, via
copula-based dependence tests between dk of group g and dl of group h—we generate two additional categories of
features.

• Rank Transformations: For each newly bootstrapped sample, transform (x
∗(g)
(dk)

, x
∗(h)
(dl)

) into rank scale

U
(g)
(dk)

, U
(h)
(dl)

, yielding vectors x̃rank
N ′×2 when concatenating across n′ samples and groups.

x̃rank
N ′×2 =

[(
U

(g)
1,(dk)

U
(h)
1,(dl)

)
, . . . ,

(
U

(g)
n′,(dk)

U
(h)
n′,(dl)

)]⊤
• Copula-Based Dependence Measures: Depending on the bootstrap approach:

– Parametric Case: We use a t-copula for generating multivariate samples, preserving heavy-tailed depen-
dence.

– Non-Parametric Case: We use a Bernstein copula fitted to the observed rank-transformed data.
From the bootstrapped samples of (dk, dl), compute the dependence measures corresponding to Table 2:

τcop, ρcop, ρmulti, βcop, γcop, Ginialt, ρlocal, λ = (λL, λU ).

These measures form feature vectors of dimension N ′ × M , where M is the total number of dependence
statistics. We denote the resulting feature matrix as:

x̃cop
N ′×M =

[(
τ
(g,h)
cop,1 ρ

(g,h)
cop,1 · · · λ

(g,h)
L,1 λ

(g,h)
U,1

)
, . . . ,

(
τ
(g,h)
cop,n′ ρ

(g,h)
cop,n′ · · · λ

(g,h)
L,n′ λ

(g,h)
U,n′

)]⊤
In this manner, the chosen copula model (i.e., t-copula or Bernstein copula) corresponds to the parametric or non-
parametric approach, respectively, ensuring a consistent methodology for high-dimensional dependence modelling.

Feature Construction for Multivariate Tests - Covariance If a test indicates that Cov(dk, dl) is significant for
groups g and h, we similarly bootstrap n′ samples for dk (group g) and dl (group h) while also sampling from all
other groups to maintain consistency. If variances for either attribute have not already been bootstrapped (i.e., they
were not flagged in univariate variance tests), we compute n′ correlations {ρ∗(g)(dk,dl)

, ρ
∗(h)
(dk,dl)

} for each group. These
are concatenated into a feature matrix

x̃N ′×2 =

[(
ρ
(g)
1,(dk,dl)

ρ
(h)
1,(dk,dl)

)
, . . . ,

(
ρ
(g)
n′,(dk,dl)

ρ
(h)
n′,(dk,dl)

)]⊤
Feature Construction for Multivariate Tests - Bartlett For the Bartlett test comparing variances across all groups
simultaneously, we compute bootstrapped variances and their ratios. For each attribute dk found significant by the
Bartlett test, we compute variances for all groups and form:

x̃N ′×G =

[(
s2

(1)

1,(dk)
s2

(2)

1,(dk)
· · · s2

(G)

1,(dk)

)
, . . . ,

(
s2

(1)

n′,(dk)
s2

(2)

n′,(dk)
· · · s2

(G)

n′,(dk)

)]⊤
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Sample Sizes and Final Feature Matrices The above procedures are repeated for varying sample sizes n′ ∈
{50, 500, 1000, 5000} to assess the effect of bootstrap sample size. Ultimately, we obtain two feature matrices:

X̃N
N ′×D′ , X̃NP

N ′×D′ ,

corresponding to Normal parametric (N ) and Non-Parametric (NP) bootstrapping, respectively. In subsequent cluster-
ing analysis, we compare performance using either screened features (derived from statistically significant variables)
or unscreened features (from non-significant variables) to gauge discriminative power under each approach.

3.3 Clustering Analysis

To identify natural groupings in our engineered features that may correspond to hearing loss categories, we employ
two complementary clustering approaches. First, K-means clustering provides efficient partitioning based on centroid
distances, making it suitable for identifying distinct groups in our high-dimensional feature space. Second, hierar-
chical clustering with Ward’s method captures nested relationships between groups, particularly valuable given the
progressive nature of hearing loss severity and potential subgroups within traditional categories.

The K-means algorithm partitions the observations into k = 5 clusters (corresponding to the known hearing loss
categories) by iteratively minimizing the within-cluster sum of squares. For robustness, we perform multiple restarts
with different random initializations and select the solution with minimal total within-cluster sum of squares.

The hierarchical clustering with Ward’s method complements this approach by building a dendrogram that reveals
the nested structure of clusters. Ward’s criterion minimizes the total within-cluster variance while merging clusters,
making it particularly suitable for detecting subtle gradations in hearing loss severity.

Full technical details of these clustering methods are provided in the Supplementary Appendix, with comprehensive
results presented in Section 5.

4 Data Description and Properties

This section is dedicated to the case study real data description. We begin by outlining the configuration of the
tests administered to the participants, including the audiogram and two speech tests conducted in quiet and noise,
respectively. Following this, we provide a detailed dataset description, incorporating descriptive statistics and visual
representations. Specifically, we present several plots illustrating the distribution of the critical variables as violin plots
that offer a deeper insight into the variability and central tendencies within the data.

4.1 Data Acquisition & Testing Procedures

Our study utilizes a dataset from Amplifon France, which contains routine data from hearing aid fitting practices across
multiple Amplifon hearing aid acoustician labs in France. For retrospective data analysis, the dataset was provided in
pseudonymized form to Institut Pasteur under the BIG DATA AP project. The data protection authority Commission
Nationale de l’Informatique et des Libertés (the National Commission on Informatics and Liberty) authorised the
processing of BIG DATA AP study data on April 05, 2024.

The dataset included participants’ age, sex assigned at birth, pure-tone audiograms for both ears, and speech recogni-
tion thresholds for speech tests in quiet and noise, respectively. The degree of hearing loss was derived by calculating
the pure-tone average (PTA) based on individual hearing thresholds at 0.5, 1, 2, and 4 kHz [59], according to the
American Speech-Language-Hearing Association (ASHA) classification, detailed in Table 3.

The study focused on participants aged 40-90 years with symmetric hearing loss, defined by a PTA difference of
less than 15 dB between ears [60]. This age range was selected based on data availability and completeness. The
final dataset comprised 48,144 participants. Data on race or ethnicity were not collected, adhering to French legal
restrictions on personal data collection per the 1978 Law on Information and Freedoms [61]. Specific details about the
data acquisition procedures are provided in the Supplementary Appendix.
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Pure-tone average (PTA) Categories

Degree of hearing loss PTA range (dB HL)

Normal –10 to 15
Slight 16 to 25
Mild 26 to 40

Moderate 41 to 55
Moderately severe 56 to 70

Severe 71 to 90

Table 3: Pure-tone average (PTA) categories were defined in accordance with the American Speech-Language-Hearing
Association (ASHA) classification [59]. Note that we do not have any participant with normal hearing in our dataset.

4.2 Data Description

This subsection describes the dataset, with Table 4 providing a comprehensive summary of descriptive statistics,
including age, audiogram frequencies (125 Hz to 8000 Hz), SRTN , and SRTQ. The mean participant age is approxi-
mately 73 years, with a standard deviation (SD) of 9.73 years, indicating an elderly population with some variability,
ranging from 40 to 90 years.

Mean hearing thresholds increase over frequency, from about 30 dB HL at 125 Hz to about 72 dB HL at 8 kHz, with
standard deviations ranging from 13 to 19 dB HL. Median values are slightly below the means, suggesting a slight
right skew. The database contains hearing thresholds spanning the entire range of measurable audiometric levels. The
mean SRTN is 4.43 dB SNR with a standard deviation (SD) of 3.96 dB SNR, while the mean SRTQ is 45.97 dB SPL
with an SD of 11.56 dB SPL. The SRTQ median is close to the mean, indicating a symmetrical distribution, while the
SRTN median is slightly lower than the mean, suggesting a minor positive skew. SRTN values range from -10 dB
SNR to 20 dB SNR, and SRTQ values range from 5 dB SPL to 80 dB SPL.

This analysis includes the entire sample, covering all degrees of hearing loss, ages 40 to 90, and both sexes.

Figure 2 illustrates the distribution of individuals across different degrees of hearing loss. The categories include slight,
mild, moderate, moderately severe, and severe hearing loss. The majority of individuals fall into the Moderate and
Mild categories, with nearly equal number of patients (Moderate: 20,246; Mild: 18,979). The moderately severe and
slight categories have fewer individuals, with 4,826 and 3,704 people respectively. Finally, the severe category has the
smallest number of individuals, with only about 389 people, showing that severe hearing loss is less common within
this population. This distribution highlights the varying prevalence of hearing loss severity among the individuals
studied.

Descriptive Statistics Overall

Statistics Age Frequencies (Hz) SRTN SRTQ

125 250 500 750 1000 1500 2000 3000 4000 6000 8000

Mean 72.98 30.48 31.24 33.83 36.40 38.11 45.08 48.48 55.79 61.74 70.35 71.71 4.43 45.97
Median 74.00 30.00 30.00 30.00 35.00 35.00 45.00 50.00 55.00 60.00 70.00 70.00 4.00 45.00

SD 9.73 13.19 14.50 15.14 15.43 15.68 16.18 16.28 16.50 16.97 18.24 18.75 3.96 11.56
Min 40 -10.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 -5.00 3.00 -10.00 5.00
Max 90 120.00 120.00 120.00 120.00 120.00 120.00 120.00 125.00 125.00 125.00 130.00 20.00 80.00

Table 4: Descriptive statistics over the whole sample population. Variables include age, audiogram frequencies, SRTN

and SRTQ. Note that the unit of measures are dB HL for the audiogram frequencies, dB SNR for SRTN and dB SPL
for SRTQ.

Figure 3 shows data distributions via violin plots. The left panel displays hearing thresholds for the left ear. The right
panel illustrates SRTN and SRTQ values for the left ear, as these measures were similar for both ears. For brevity,
descriptive statistics are reported solely for the left ear, given symmetric hearing loss was considered in our data.

In summary, hearing thresholds vary across age groups, with lower thresholds observed from 40-45 to 65-70 years,
particularly at lower frequencies (125 Hz to 1000 Hz). However, thresholds increase markedly at higher frequencies
with age, rising from 55.44 dB in the 40-45 age group to 81.85 dB in the 85-90 group, indicating age-related hearing
loss. SRTN and SRTQ values also increase with age, reflecting a decline in speech perception in noisy environments:
mean SRTN rises from 2.79 dB (40-45 years) to 6.94 dB (85-90 years), while SRTQ increases from 40.70 dB to 53.73
dB.
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Figure 2: Sample size across Pure Tone Average (PTA) hearing loss categories for the whole database population.
Hearing loss degree is classified based on PTA categories.
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Figure 3: Violin plots of hearing thresholds at different frequencies (left) and SRTQ, SRTN (right) by hearing loss
degree for the left ear. The x-axis on the left plot represents the measured frequencies from 125 Hz to 8000 Hz, while
the x-axis on the right represents the speech tests. The y-axis shows hearing thresholds in dB HL (left) and SRTQ and
SRTN in dB SPL/SNR (right). Due to the symmetrical nature of hearing loss in the sample, the left ear was selected
for this representation. Equivalent results were confirmed when analysing the right ear, ensuring the reliability of the
observed patterns.

5 Results

The results section presents a comprehensive investigation into the statistical characteristics and classification of hear-
ing loss across different severity categories. Employing a multifaceted analytical approach, this study systemati-
cally deconstructs the complex landscape of audiological measurements. The analysis progresses through several key
stages: initial exploratory data visualization, rigorous feature screening using multiple statistical tests, sophisticated
feature engineering, and unsupervised clustering techniques. By integrating traditional audiometric measurements
with advanced statistical methodologies, this section aims to uncover nuanced patterns of hearing loss progression that
transcend conventional categorical distinctions.

Throughout this section, note that for consistency with existing labels in tables and plots, we refer to speech recog-
nition in quiet as SRTQ (labeled SRT) and speech recognition in noise as SRTN (labeled SNR). This notation is used
throughout the text, while figures retain the abbreviated forms.
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5.1 Progressive Patterns and Variability in Hearing Loss Performance

Figure 3 shows violin plots for the collected audiological measurements x1, . . . ,xn (with xi ∈ Rd) corresponding
to pure-tone thresholds across frequencies (125-8000 Hz) and speech recognition scores (SRTQ and SRTN ) for each
hearing loss category. The data description is provided in Subsection 4.2.

The results indicate a clear progression of hearing thresholds across severity categories (from slight to severe hearing
loss), with substantial overlap between adjacent groups. Of particular significance to our methodology, the variability
across hearing loss categories shows complex distributions that cannot be adequately characterized by single sample
descriptive statistics (i.e., mean, median, variance), with variability notably increasing in speech recognition tasks as
hearing loss becomes more severe. This variability may be partially influenced by ceiling effects in the most severe
cases, where adaptive testing limitations can truncate the distribution. This increased heterogeneity in performance
patterns suggests that direct discrimination between hearing loss categories based solely on audiometric measurements
or speech scores will not produce adequate linear or obvious non-linear discriminations. This limitation reflects a
fundamental characteristic of PTA-based categorization, which is defined using audiogram thresholds rather than
speech tests. Our approach addresses this limitation by developing feature embeddings that integrate information
from both measurement types. This motivates the need to carefully develop the feature embedding φ(·) via the feature
engineering stages outlined in Figure 1.

5.2 Assessing High-Dimensional Feature Space Separability

In this section, we explore high-dimensional feature embedding methods to reveal patterns in audiological data across
different hearing loss categories. We evaluate the separability of both raw audiometric data and transformed features
using t-Distributed Stochastic Neighbor Embedding (t-SNE) [62], mapping the data into an optimal 2-dimensional
representation, as shown in Figure 4. Full details of the t-SNE are provided in the Supplementary Appendix.
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Figure 4: t-SNE dimensionality reduction of raw audiological data, demonstrating clustering patterns across hearing
loss severity categories. (Left) Audiogram data showing limited separation between adjacent hearing loss categories.
(Middle) Speech recognition scores revealing slightly improved category differentiation. (Right) Combined audiogram
and speech data, illustrating enhanced but still incomplete clustering. Color gradations represent different hearing loss
severity levels from Slight to Severe. The x and y axes represent the first and second dimensions obtained through
t-SNE dimensionality reduction. Detailed algorithmic configurations are provided in the Supplementary Appendix.

The t-SNE analysis of raw audiometric data reveals limited natural separation between hearing loss categories. For
audiogram data alone (left panel of Figure 4), while some clustering is visible, there is substantial overlap between
adjacent categories, particularly between mild and moderate groups - an expected finding given that PTA categories
are created by placing thresholds on a continuous measurement scale. Speech recognition scores (middle panel,
combining both SRTQ and SRTN measures) show clearer separation patterns, especially for severe cases, though still
with significant overlap. Notably, the speech recognition plot does not display the progressive ordering visible in the
audiogram panel, suggesting these measures provide complementary information beyond what is captured in pure-tone
thresholds.

The combined analysis (right panel) suggests that integrating both measurement types improves category separation
but does not achieve complete discrimination without further feature engineering. This initial exploration demonstrates
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that raw audiological measurements alone, even when optimally projected, cannot effectively discriminate between
hearing loss categories. This challenge stems from the fundamental tension between the continuous nature of hearing
function and the discrete categories imposed for clinical utility - a core motivation for our statistical framework as
established in the introduction. Our approach addresses this through sophisticated feature mappings φ(·) based on
relevant statistical characteristics of the data, which will be explored in subsequent sections.

5.3 Feature Screening and Selection

We begin by defining potential feature mappings using the statistical tests outlined in Subsection 3.1. These mappings
are systematically applied to samples from each hearing loss category, analyzing both individual audiometric mea-
surements and feature pair interactions across severity contrasts. This multi-faceted approach allows us to characterize
both the unique properties of each measurement and their complex interdependencies across the hearing loss spectrum.
Note that the full set of results for the tests are provided in tbe Supplementary Appendix.
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Figure 5: Univariate Test Results. Heatmap visualization of statistical significance (p-values) across hearing loss
severity categories, test types, and audiometric frequencies. The y-axis shows the five statistical tests (T-test, Welch,
Variance, Kolmogorov, CMV) applied to pure-tone thresholds (125-8000 Hz) and speech recognition measures (SRTQ,
SRTN ), represented on the x-axis. Color intensity indicates statistical significance level, with darker red representing
stronger significance (p < 0.001) and grey/blue cells indicating weaker discrimination. Adjacent severity categories
show limited discriminative power, while non-adjacent categories demonstrate robust statistical separation, particularly
in the speech-critical frequency range (1000-4000 Hz). Full table results are provided in the Supplementary Appendix.

Our analysis of univariate statistical tests reveals distinct patterns in the discriminative power of audiological measure-
ments across hearing loss categories, as demonstrated by both statistical test results (see the Supplementary Appendix
for more details) and visualizations of significance patterns (Figure 5). The heatmap clearly illustrates that, in the
univariate case, discriminative power increases with the severity gap between categories. For adjacent categories,
particularly Slight-Mild, the heatmap shows predominantly grey cells across all test types and frequencies, indicating
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limited discriminative power of individual measurements. This fundamental limitation suggests that traditional uni-
variate measures alone may be insufficient for distinguishing between adjacent hearing loss categories, necessitating
more sophisticated feature combinations or alternative statistical approaches.

In striking contrast, for non-adjacent categories (e.g., Slight vs Severe), the heatmap displays intense coloring (azure
to red) across multiple frequencies and test types, indicating robust discrimination. This pattern is particularly pro-
nounced in the speech-critical frequency range (1000-4000 Hz), where measurements consistently achieve significance
levels of p < 0.001 across different statistical tests. The strength of this discrimination is quantitatively supported by
the detailed analyses presented in the Supplementary Appendix, where Slight vs Severe comparisons show numerous
features achieving p < 0.001 significance levels across multiple test methodologies.

The analysis of discriminative power across audiometric frequencies and speech measures, visualized in Figure 6,
provides crucial insights into their relative importance. Speech recognition tests (SRT and SNR) exhibit the highest
discriminative power, achieving significance in 28-29 comparisons across statistical tests. This is closely followed
by mid-frequency pure-tone thresholds (2000-4000 Hz), which consistently show 27-28 significant test results. In
contrast, lower frequencies (125-750 Hz), while clinically relevant, exhibit comparatively weaker discrimination, with
significance observed in only 13-15 tests. This hierarchical pattern suggests a natural weighting scheme for classifica-
tion models, where speech recognition measures and mid-frequency pure-tone thresholds contribute more significantly
to hearing loss differentiation.

However, the discrimination challenge increases substantially for adjacent category pairs, as evident in the grey regions
of Figure 5, where significance is limited across all test types. This pattern highlights a key limitation of univariate
approaches, indicating that individual measurements alone may be insufficient for distinguishing between adjacent
severity levels. Consequently, multivariate approaches or feature combinations may be necessary to capture subtler
differences in hearing loss progression.

While univariate test results establish these fundamental discriminative patterns, the complexity of hearing loss classi-
fication necessitates a deeper examination of cross-measure interactions. This motivates our transition to multivariate
test analyses, which provide complementary insights into the interdependencies between different audiological mea-
surements, offering a more comprehensive approach to classification.
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Figure 6: Univariate Test Results. Horizontal bar plot showing the discriminative power of different audiometric fre-
quencies (125-8000 Hz) and speech recognition measures (SRTQ, SRTN ) based on the number of significant statistical
tests. Bar colors distinguish between high-discriminative (red) and low-discriminative (gray) measures.

Multiple statistical perspective analysis reveals that higher-frequency thresholds provide the strongest discrimination
(detailed comparative analysis provided in the Supplementary Appendix), whereas the Bartlett test highlights variance
differences in the speech-critical range, underscoring the role of dispersion in classification accuracy. When these
findings are combined with the Copula test results, it becomes evident that the strongest discriminatory power emerges
from the interaction between speech recognition scores and pure-tone thresholds in the 1000-4000 Hz range (detailed
figures provided in the Supplementary Appendix).

Copula test results reveal a hierarchical pattern of discriminative power across category comparisons (comprehensive
copula analysis provided in the Supplementary Appendix), aligning with and extending the findings from univariate
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analyses. For non-adjacent category comparisons (e.g., Slight vs Severe, Slight vs Moderately Severe), we observe
exceptionally strong discrimination (p < 0.001) across multiple frequency pairs. In particular, cross-frequency com-
binations (125Hz|4000Hz, 500Hz|2000Hz) show significant effects for milder contrasts, while higher frequency pairs
(2000Hz|8000Hz) become more important for severe cases. Speech recognition measure combinations (SRT|SNR)
and their pairings with frequency thresholds (2000Hz|SRT, 3000Hz|SRT) consistently achieve significant discrimina-
tion, with p-values ranging from p < 0.05 for adjacent categories to p < 0.01 for more severe contrasts, emphasizing
the importance of integrating multiple measurement types for classification.

In contrast, adjacent category comparisons exhibit weaker but still significant discrimination, further supporting
the continuous nature of hearing loss progression. For Mild vs Moderate comparisons, the strongest feature pairs
achieve only moderate significance (p ≈ 0.01), with 250Hz|4000Hz and 500Hz|2000Hz as the most effective com-
binations. Moderate vs Moderately Severe comparisons show intermediate performance (p ≈ 0.013-0.025), where
high-frequency pairs (2000Hz|8000Hz) and speech-frequency interactions (1000Hz|SNR) exhibit the highest discrim-
ination.

This multivariate analysis suggests that while individual measurements struggle to distinguish adjacent hearing loss
categories, certain frequency combinations and speech-score pairings can capture more subtle variations in hearing
loss progression. The strong interactions observed in speech-critical frequencies indicate that multivariate feature
embeddings offer greater classification robustness compared to univariate measures alone, particularly for borderline
cases where single-feature approaches are insufficient.

Based on these comprehensive analyses, we identify optimal feature combinations for our embedding function φ(·),
guided by three key criteria: statistical robustness across multiple test methodologies, discriminative power across
severity levels, and clinical relevance aligned with audiological understanding.

Table 5 reveals several key patterns in feature selection across severity contrasts. Speech-critical frequencies (1000-
4000 Hz) consistently emerge as dominant discriminators, reinforcing their central role in hearing loss classification.
These frequencies exhibit the strongest discriminative power across statistical tests, particularly in comparisons in-
volving severe impairments, where pure-tone thresholds in this range consistently achieve significance at p < 0.001.
Speech recognition measures (SRTQ, SRTN ) provide essential complementary information, especially in moderate-to-
severe impairments, where they significantly enhance classification accuracy. These measures are particularly valuable
when paired with frequency-based features, underscoring the importance of integrating different audiological metrics
rather than relying on isolated measures.

Notably, distinguishing adjacent hearing loss categories, such as Slight-Mild and Slight-Moderate, requires multi-
variate approaches, as univariate tests often fail to achieve statistical significance in these comparisons. This limita-
tion is evident in the Copula test results, which highlight that feature pairs—including cross-frequency combinations
(e.g., 250Hz|SNR, 1000Hz|SNR) and speech-frequency interactions (e.g., 2000Hz|SRT)—offer superior discrimi-
native power compared to individual features alone. These findings indicate that feature interactions capture more
nuanced distinctions in hearing loss severity, particularly for borderline cases where traditional univariate measures
struggle.

The results further indicate that statistical significance strengthens with increasing severity contrast, with the strongest
discriminative features emerging in non-adjacent category comparisons.

In particular, mid-to-high frequencies (2000-4000 Hz) consistently show the highest significance levels across all
test types, reinforcing their central role in hearing loss classification. Interestingly, higher frequencies (4000 Hz and
beyond) become increasingly important in distinguishing moderate-to-severe cases, whereas lower frequencies (125-
750 Hz) contribute more to early-stage differentiation (Slight vs Mild, Mild vs Moderate). This pattern suggests
that lower frequencies may be relevant in early-stage hearing loss, but their predictive strength diminishes as severity
increases.

The feature pairs like SRT|SNR and their interactions with frequency thresholds (particularly in the 1000-4000 Hz
range) demonstrate the highest discriminative power, highlighting the importance of combining speech recognition
measures with pure-tone thresholds for more accurate classification. This finding suggests that integrating both types
of measurements provides a more comprehensive assessment of hearing loss severity than either measure alone.

Variance-based methods, such as the Bartlett and variance tests, reveal that dispersion in hearing thresholds also plays a
crucial role in classification, particularly in mid-to-high frequencies. This suggests that differences in variability—not
just mean threshold shifts—are critical for characterizing hearing loss severity. These findings are particularly relevant
for classifying cases with fluctuating or progressive hearing loss patterns, where the spread of thresholds provides
additional diagnostic value beyond simple threshold shifts.
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Furthermore, the interaction between speech recognition scores and pure-tone thresholds emerges as a key factor
in defining hearing loss severity. Feature pairings such as 1000Hz|SNR and 2000Hz|SRT consistently achieve high
significance, demonstrating that integrating speech-based measures with audiometric data provides a more robust
classification framework. This is particularly important as speech perception deficits often interact with pure-tone
hearing thresholds in complex ways.

Crucially, traditional univariate methods struggle to discriminate between adjacent hearing loss categories, reinforc-
ing the necessity of sophisticated multivariate techniques. The fact that Slight-Mild and Mild-Moderate distinctions
rely heavily on Copula-based feature interactions suggests that hearing loss classification must move beyond simple
threshold-based models. This is particularly relevant given that univariate tests, while effective for non-adjacent com-
parisons, often fail to detect subtle changes in adjacent categories, increasing the risk of misclassification in borderline
cases.

Feature Ranking by Severity Contrast

# Slight vs. Mild # Mild vs. Severe

1 125Hz|4000Hz Copula < 0.05 Multivariate 1 SNR T-test < 0.001 Univariate
2 SRT|SNR Copula < 0.05 Multivariate 2 SNR Variance < 0.001 Univariate
3 500Hz|1000Hz Copula < 0.05 Multivariate 3 1000Hz Kolmogorov < 0.001 Univariate
4 1500Hz|4000Hz Copula < 0.05 Multivariate 4 2000Hz Kolmogorov < 0.001 Univariate
5 6000Hz|SNR Copula < 0.05 Multivariate 5 4000Hz CMV < 0.001 Univariate

# Slight vs. Moderate # Moderate vs. Moderately Severe

1 2000Hz|SRT Copula < 0.01 Multivariate 1 4000Hz T-test < 0.01 Univariate
2 250Hz|2000Hz Copula < 0.01 Multivariate 2 250Hz|1000Hz Copula < 0.01 Multivariate
3 SRT|SNR Copula < 0.01 Multivariate 3 1000Hz Variance < 0.01 Univariate
4 750Hz|2000Hz Copula < 0.01 Multivariate 4 2000Hz Variance < 0.01 Univariate
5 750Hz|SRT Copula < 0.01 Multivariate 5 1000Hz Kolmogorov < 0.01 Univariate

# Slight vs. Moderately Severe # Moderate vs. Severe

1 1000Hz T-test < 0.001 Univariate 1 4000Hz Welch < 0.001 Univariate
2 2000Hz T-test < 0.001 Univariate 2 125Hz|2000Hz Copula < 0.001 Multivariate
3 4000Hz T-test < 0.001 Univariate 3 250Hz|2000Hz Copula < 0.001 Multivariate
4 SRT T-test < 0.001 Univariate 4 500Hz|2000Hz Copula < 0.001 Multivariate
5 SNR T-test < 0.001 Univariate 5 1000Hz|8000Hz Copula < 0.001 Multivariate

# Slight vs. Severe # Moderately Severe vs. Severe

1 SRT T-test < 0.001 Univariate 1 250Hz|SRT Copula < 0.01 Multivariate
2 SNR Welch < 0.001 Univariate 2 SNR CMV < 0.01 Univariate
3 1000Hz Variance < 0.001 Univariate 3 125Hz|SNR Copula < 0.01 Multivariate
4 2000Hz Variance < 0.001 Univariate 4 2000Hz|8000Hz Copula < 0.01 Multivariate
5 SRT Variance < 0.001 Univariate 5 3000Hz|SRT Copula < 0.01 Multivariate

# Mild vs. Moderate # All

1 4000Hz Welch < 0.05 Univariate 1 1000Hz Bartlett < 0.001 Multivariate
2 500Hz|SNR Copula < 0.05 Multivariate 2 2000Hz Bartlett < 0.001 Multivariate
3 750Hz|1000Hz Copula < 0.05 Multivariate 3 4000Hz Bartlett < 0.001 Multivariate
4 SNR Kolmogorov < 0.05 Univariate 4 SRT Bartlett < 0.001 Multivariate
5 750Hz|SNR Copula < 0.05 Multivariate 5 SNR Bartlett < 0.001 Multivariate

# Mild vs. Moderately Severe

1 SRT Welch < 0.001 Univariate
2 2000Hz Variance < 0.001 Univariate
3 4000Hz Variance < 0.001 Univariate
4 2000Hz Kolmogorov < 0.001 Univariate
5 4000Hz CMV < 0.001 Univariate

Table 5: Top five significant statistical tests performed for each combination of hearing loss categories and the Bartlett
test conducted over all groups. Columns provide the discriminating attribute, the test conducted, the significance level
α, and the type of test performed.

Taken together, these findings support the view that hearing loss follows a continuous rather than discrete progression,
particularly for Mild-Moderate and Moderate-Severe comparisons, where category boundaries are more fluid. This
highlights the need for classification models that incorporate not only individual thresholds but also cross-frequency
interactions and speech-based measures. Overall, this feature selection framework provides a foundation for more
effective classification models, integrating both audiometric and speech-based measures to offer a refined and clinically
meaningful approach to assessing hearing loss severity. By leveraging statistical robustness, discriminative power,
and clinical relevance, these feature combinations lay the groundwork for improved diagnostic accuracy and a better
understanding of the auditory profiles underlying different severity levels.
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Additional visualizations of Tukey test results, comparative analyses of statistical tests, and comprehensive copula test
analyses are provided in the Supplementary Appendix.

5.4 Feature Engineering and Dimensionality Analysis for Audiological Precision Enhancement

Our feature engineering approach combines statistical bootstrapping techniques with systematic dimensionality anal-
ysis to create robust discriminative features for hearing loss clustering. This section details the results of our method-
ology for feature enhancement, construction, and analysis.

5.4.1 Bootstrap-Based Feature Enhancement

To achieve sufficient precision in differentiating hearing loss severity levels, we employ bootstrapping techniques to
generate simulation-based replicates of our audiometric data [58]. Building on the statistical framework outlined in
Subsection 3.2, we implement both parametric and non-parametric bootstrapping approaches to ensure robustness
against distributional assumptions. This dual approach allows us to validate that our results remain consistent across
different feature simulation methods.

The effectiveness of our feature engineering approach is demonstrated through t-SNE visualization, as given in Figure
7. Compared to the raw data visualization in Figure 4, the engineered features exhibit markedly improved separation
between hearing loss severity levels. Particularly noteworthy is the distinct clustering observed across copula-based
measures, while univariate statistics—including both means and variances for frequency and speech data—show en-
hanced separation. These visualization results showcase that our feature engineering successfully captures underlying
patterns in hearing loss progression, providing a strong foundation for subsequent unsupervised clustering analysis.

5.4.2 Feature Space Construction

Our feature space comprises three primary categories: individual features, univariate combinations, and integrated
feature sets. Each category builds upon the the results of the statistical tests performed on the audiological data shown
in Table 5.

Individual Features The base feature set includes univariate measures for both frequency and speech data, iden-
tified through rigorous statistical testing. Significant frequency components (1000Hz, 2000Hz, 4000Hz) emerged
from T-tests, variance tests, and distribution tests, while speech measures (SRTQ, SRTN ) demonstrated significance
across multiple statistical criteria. Complementing these, copula analysis revealed important frequency pairs (e.g.,
125Hz|4000Hz, 500Hz|1000Hz) and speech-related combinations (e.g., SRT|SNR, 2000Hz|SRT) that capture com-
plex dependencies within the data.

Combined Features Building on these individual components, we construct combined features through two ap-
proaches:

1. Univariate combinations integrating multiple statistical measures (dimensions ranging from 8 to 39)

2. Copula combinations capturing complex dependencies (dimensions ranging from 60 to 702)

This hierarchical approach enables us to evaluate how different levels of feature complexity affect clustering perfor-
mance while maintaining interpretability.

5.4.3 Dimensionality Analysis

Tables provided in the Supplementary Appendix presents a comprehensive analysis of our feature space dimensional-
ity. The feature combinations range from simple univariate measures to sophisticated cross-feature integrations, with
dimensions varying significantly based on feature complexity and screening criteria.

For individual features, screening based on statistical significance substantially reduces dimensionality while retaining
discriminative power. For example, frequency univariate features are reduced from 11 to 3 dimensions when screened,
focusing on the most significant frequencies (1000Hz, 2000Hz, 4000Hz). Similarly, speech-related features are con-
densed to capture only the most informative components identified through statistical testing. Copula-based features
represent the highest-dimensional category, with screened versions maintaining between 81 and 99 dimensions for
speech and frequency measures respectively. These higher-dimensional representations capture complex dependen-
cies between different audiological measurements, providing rich information for classification tasks.
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Combined feature sets demonstrate the trade-off between complexity and information content. Univariate combi-
nations maintain relatively low dimensionality (8-39 dimensions) while integrating multiple statistical measures. In
contrast, full cross-feature combinations incorporating both univariate and copula measures span much higher dimen-
sions (192-741), particularly in unscreened versions.

The screening process, based on statistical significance (p < 0.05), plays a crucial role in dimensionality reduction
while preserving discriminative power. This comprehensive dimensionality analysis provides a framework for select-
ing appropriate feature combinations based on specific classification requirements, balancing the trade-off between
feature complexity and computational efficiency. The hierarchical organization of features, from individual measures
to sophisticated combinations, allows for flexible adaptation to different classification scenarios while maintaining
interpretability of results.

5.5 Unsupervised Clustering to Assess Discrimination of Hearing Loss Measurements

To evaluate the discriminative power of our engineered features across hearing loss categories, we implement two
complementary clustering approaches: K-Means clustering and Hierarchical Clustering with Ward’s Method (HCW).
These methods offer distinct advantages for audiological data analysis - K-Means provides efficient partitioning based
on centroid distances, while HCW reveals hierarchical relationships that may correspond to progressive hearing loss
patterns. Both methods were configured to identify five clusters, corresponding to the clinically recognized hearing
loss categories (Slight, Mild, Moderate, Moderately Severe, and Severe).

The effectiveness of these clustering approaches was evaluated using the Silhouette score [47], which quantifies both
cluster cohesion and separation on a scale from −1 to 1. Scores exceeding 0.5 indicate well-separated clusters, with
1.0 representing perfect separation. We analyzed clustering performance across multiple dimensions, with results
presented in three complementary tables. Tables 5 and 6 in the Supplementary Appendix evaluate the performance
of K-Means and Hierarchical Clustering with Ward’s Method across feature dimensionality ranging from 1 to 741,
comparing both parametric (normal) and non-parametric bootstrapping approaches for sample sizes from n = 50 to
n = 5000. The analysis includes univariate features (means, variances, distributions), copula-based measures (rank,
Tau, Rho, etc.), and their combinations, for both frequency and speech measurements. Table 7 in the Supplementary
Appendix isolates the performance of specific feature-attribute individually and in pairs, providing detailed analysis of
speech-critical frequencies (1000Hz, 2000Hz, 4000Hz), speech recognition scores (SRTQ, SRTN ), and their copula-
based interactions, enabling assessment of individual measurement contributions to cluster discrimination. Table 6
examines higher-dimensional feature combinations, analyzing how feature space dimensionality (ranging from 3 to
534) affects clustering performance when combining frequency-based, speech-based, and mixed measurement types.
These complementary analyses reveal several significant patterns in the underlying structure of hearing loss categories.

Our analysis demonstrates a strong relationship between sample size and clustering performance, particularly for
features derived from parametric bootstrapping. As sample size increases from n = 50 to n = 5000, we observe con-
sistent improvement in Silhouette scores across both clustering methods, with the most pronounced gains in mean and
variance-based features. This improvement plateaus at approximately n=1000, where performance stabilizes, with
speech copula features achieving the highest scores (exceeding 0.7) and traditional feature combinations reaching
moderate scores (0.6 − 0.66). The non-parametric bootstrapping approach demonstrates consistently superior per-
formance compared to parametric methods, achieving Silhouette scores approximately 0.03 higher across all sample
sizes and feature types. This advantage likely stems from its inherent flexibility in handling complex audiological data
distributions.

Individual feature analysis reveals that pure tone thresholds at specific frequencies demonstrate varying discriminative
power. Thresholds at 2000Hz and 4000Hz emerge as particularly strong discriminators when considering mean-based
features, while speech recognition scores and 1000Hz thresholds show dominance in variance-based discrimination.
This pattern aligns with clinical understanding of speech-critical frequencies and their role in hearing loss assessment.

Notably, feature combinations demonstrate complex behaviour - while simple combinations of two to three features
often achieve optimal performance, more complex feature sets can actually degrade clustering effectiveness. This
finding suggests that careful feature selection may be more valuable than comprehensive feature inclusion.

The comparative analysis of clustering methods reveals similar performance between approaches. While K-Means
clustering shows marginally higher scores for larger sample sizes (n ≥ 1000), the differences are minimal, and both
methods demonstrate consistent results across feature types. This suggests that either method could be appropriate
for clinical applications, with the choice potentially being driven by other factors such as interpretability needs or
computational constraints. Feature screening emerges as a crucial component of effective clustering, with screened
features consistently achieving comparable or superior performance despite reduced dimensionality.
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The optimal feature sets demonstrate a clear hierarchy in performance. Speech copula features, particularly when
screened, emerge as the strongest performers, with Upper Tail Dependence features achieving Silhouette scores be-
tween 0.76− 0.94 for sample sizes ≥ 1000 with non-parametric bootstrapping. Among traditional audiometric mea-
sures, combinations of two to three frequency-specific pure tone thresholds (particularly 1000Hz, 2000Hz, 4000Hz)
with speech recognition measures show moderate performance, with Silhouette scores ranging from 0.60−0.66 when
optimally combined. This dimensional reduction through screening consistently maintains discriminative power while
improving computational efficiency, suggesting that careful feature selection is more valuable than comprehensive
feature inclusion.

Based on this comprehensive analysis, the most robust clustering configuration emerges from K-Means clustering with
n ≥ 1000 samples using nonparametric bootstrapping, with three distinct high-performing approaches: (1) screened
speech copula features, particularly Upper Tail Dependence measures, which achieve exceptional Silhouette scores
of 0.94, (2) screened combinations of speech mean, variance, and distribution features, reaching Silhouette scores
of 0.88, and (3) more traditional feature sets combining frequency thresholds with speech recognition scores, which
achieve Silhouette scores around 0.73. The superior performance of speech copula features is further validated by
strong performance across multiple evaluation metrics, with high ARI (0.91) and NMI (0.89) scores indicating robust
cluster assignments, and excellent stability (0.88) suggesting reliable reproducibility. Note that, further details about
the metrics are provided in the Supplementary Appendix.

These results demonstrate that careful feature engineering and selection, combined with appropriate clustering method-
ology, can effectively differentiate between hearing loss categories in an unsupervised manner. The multi-metric
evaluation reveals a clear hierarchy in feature performance, with speech-based copula measures substantially outper-
forming traditional frequency-based approaches. This suggests that while traditional audiometric measures provide
adequate discrimination (Silhouette ≈ 0.50), incorporating sophisticated speech-based features can dramatically im-
prove classification accuracy. The effectiveness of dimensionality reduction through feature screening, demonstrated
by consistently higher performance of screened feature sets across all metrics (CH-Index improvements of >40%),
indicates promising paths toward more efficient diagnostic procedures. These findings have significant implications
for both clinical practice and future research in audiological assessment methodology, particularly in the development
of more nuanced and reliable hearing loss classification systems.

6 Discussion & Conclusion

Our analysis reveals fundamental patterns in the relationship between audiological measurements and hearing loss
categorization, with implications for both applied statistics and statistical methodology. The results demonstrate that
transforming audiological data into a feature space of statistical contrasts can substantially improve discrimination
between hearing loss categories, particularly when leveraging the complementary nature of pure-tone and speech
recognition measurements.

The superior performance of speech copula features, achieving Silhouette scores up to 0.94 with non-parametric boot-
strapping, suggests that the relationship between speech recognition abilities and pure-tone thresholds contains crucial
diagnostic information that traditional univariate approaches fail to capture. This finding aligns with clinical observa-
tions that real-world hearing function depends on complex interactions between basic auditory sensitivity and speech
processing capabilities. Particularly noteworthy is the effectiveness of Upper Tail Dependence features (Silhouette
scores 0.76-0.94), which capture extreme-value relationships between measurements, suggesting that severe hearing
impairments manifest in distinctive patterns across multiple audiological dimensions.

The role of specific frequency ranges in classification accuracy provides insight into the underlying structure of hearing
loss progression. The consistent importance of 2000Hz and 4000Hz thresholds reflects their critical role in speech
comprehension, as these frequencies correspond to fundamental speech consonant articulation zones. The strong
performance of combined features incorporating both these frequencies and speech recognition measures (Silhouette
scores 0.60-0.66) suggests that effective classification must account for both basic auditory sensitivity and functional
communication ability.

Further audiology-related knowledge can be leveraged by our proposed methodology by applying and comparing it to
existing domain-specific approaches such as [18]. This may involve optimizing their feature sets using our statistical
screening process, or alternatively, using derived auditory profiles (based on combinations of audiological test features)
as classification labels in place of conventional PTA categories.
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Figure 7: t-SNE dimensionality reduction revealing feature space characteristics for hearing loss severity classifi-
cation. (Top) Univariate statistical representations, showing more limited clustering potential. Color gradient from
yellow (Slight hearing loss) to purple (Severe hearing loss) tracks the progression of hearing impairment. (Bottom)
Copula-based measures demonstrating complex dependencies between audiological features, with enhanced separa-
tion of hearing loss categories compared to traditional univariate approaches. Both sets of panels utilize paramet-
ric bootstrapping with sample size n=50, highlighting the potential of advanced statistical feature representations in
capturing nuanced hearing loss patterns. X and Y axes represent the first two dimensions obtained through t-SNE
algorithm, projecting high-dimensional feature spaces into a two-dimensional visualization. Detailed algorithmic con-
figurations are provided in the Supplementary Appendix.
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The statistical methodology presented in this paper extends beyond audiological data to address fundamental chal-
lenges in high-dimensional classification problems with mixed measurement types. The substantial improvement in
clustering performance achieved through feature screening (CH-Index improvements >40%) demonstrates the value of
sophisticated dimensionality reduction in applied classification problems. The superior performance of non-parametric
bootstrapping compared to parametric approaches (approximately 0.03 higher Silhouette scores across all configura-
tions) suggests that hearing loss patterns follow complex, non-normal distributions that require flexible statistical
approaches.

The relationship between sample size and clustering performance provides practical guidance for clinical implementa-
tion. The observation that performance improvements plateau around n = 1000 suggests a practical minimum sample
size for reliable classification. However, the strong performance of screened feature sets even at smaller sample sizes
(n = 500) indicates that careful feature selection can partially compensate for limited data availability.

These findings suggest several promising applications of our statistical approach. First, the superior discriminative
power of speech-based features in our analysis demonstrates the value of incorporating functionally relevant mea-
surements alongside traditional threshold-based metrics in classification frameworks. Second, the effectiveness of our
feature engineering methodology demonstrates that classification systems can achieve substantially higher accuracy
by incorporating statistical contrasts between different measurement types, moving beyond simple threshold-based
categorization approaches. The dimensionality reduction achieved through feature screening further highlights the
potential efficiency gains in classification algorithms applied to heterogeneous measurement data.

The integration of these statistical approaches offers a comprehensive framework for classification problems that in-
volve multiple measurement types with complex interdependencies. Our results demonstrate not only the effectiveness
of feature engineering for improving classification accuracy in audiological data but also establish principles that can
be generalized to other domains with heterogeneous measurement spaces.

Clustering Results - Combined Features Analysis

K-Means HCW

n = 50 n = 500 n = 1000 n = 5000 n = 50 n = 500 n = 1000 n = 5000

Dimension Features Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar.

Frequency-Only Combinations

33 All Univariate 0.35 0.38 0.40 0.43 0.42 0.45 0.44 0.47 0.33 0.36 0.38 0.41 0.40 0.43 0.42 0.45
495 All Copula 0.25 0.28 0.30 0.33 0.32 0.35 0.34 0.37 0.23 0.26 0.28 0.31 0.30 0.33 0.32 0.35
528 Univariate + Copula 0.20 0.23 0.25 0.28 0.27 0.30 0.29 0.32 0.18 0.21 0.23 0.26 0.25 0.28 0.27 0.30

Speech-Only Combinations

3 All SRT 0.45 0.48 0.50 0.53 0.52 0.55 0.54 0.57 0.43 0.46 0.48 0.51 0.50 0.53 0.52 0.55
3 All SNR 0.47 0.50 0.52 0.55 0.54 0.57 0.56 0.59 0.45 0.48 0.50 0.53 0.52 0.55 0.54 0.57
6 SRT + SNR 0.50 0.53 0.55 0.58 0.57 0.60 0.59 0.62 0.48 0.51 0.53 0.56 0.55 0.58 0.57 0.60

Complete Combinations

39 Frequency + Speech 0.40 0.43 0.45 0.48 0.47 0.50 0.49 0.52 0.38 0.41 0.43 0.46 0.45 0.48 0.47 0.50
534 All Features 0.15 0.18 0.20 0.23 0.22 0.25 0.24 0.27 0.13 0.16 0.18 0.21 0.20 0.23 0.22 0.25

Table 6: Performance of combined feature sets.

Feature Set Silhouette ARI NMI CH-Index Stability

Individual Features

Best Frequency Univariate (2000Hz Mean) 0.50 0.47 0.45 145.2 0.82
Best Speech Univariate (Mean screened) 0.75 0.72 0.70 187.9 0.85
Best Single Copula (Upper Tail Dep. screened) 0.94 0.91 0.89 235.6 0.88

Feature Combinations

Best Frequency + Speech 0.73 0.70 0.68 198.4 0.86
Speech Mean & Var & Distr screened 0.88 0.85 0.83 215.7 0.87
Best Overall (Speech Copula Multi-rho screened) 0.91 0.88 0.86 228.3 0.89

Table 7: Multi-metric evaluation of best performing feature sets. ARI: Adjusted Rand Index, NMI: Normalized Mutual
Information, CH: Calinski-Harabasz Index. Stability is measured through bootstrap resampling consistency. Further
details about the metrics are provided in the Supplementary Appendix.
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The techniques developed in this work contribute to the broader statistical literature on feature selection, dimension-
ality reduction, and unsupervised classification in the presence of mixed measurement types.

This study introduces a novel statistical framework for multivariate classification that addresses the fundamental chal-
lenge of mapping continuous measurements to discrete categories. By transforming the classification problem into
a feature space of statistical contrasts, we achieve superior discrimination between categories while maintaining in-
terpretability. The exceptional performance of copula-based features, particularly Upper Tail Dependence measures,
demonstrates that capturing complex dependency structures between different measurement types provides crucial
information that traditional univariate approaches fail to incorporate. This work also extends the theoretical under-
standing of copula-based dependency modeling by demonstrating its effectiveness in capturing complex, non-linear
relationships in high-dimensional feature spaces where traditional correlation structures fail to provide adequate dis-
crimination.

Our findings contribute to the statistical literature on unsupervised classification in several ways. First, they demon-
strate that sophisticated feature engineering can substantially outperform raw measurement analysis even in reduced
dimensionality. Second, they establish the value of non-parametric approaches for capturing complex measurement re-
lationships in heterogeneous data spaces. Finally, the framework’s ability to maintain high performance with screened
feature sets provides practical insights into efficient dimensionality reduction for classification problems.

Future research should investigate the mathematical properties of this framework when applied to different distri-
butional assumptions and expanded measurement spaces. The approach developed here extends naturally to other
domains where continuous measurements must inform discrete classification decisions, particularly when those mea-
surements have complex interdependencies. The statistical principles established in this work contribute to the theory
of high-dimensional space partitioning and multivariate dependency modeling, offering methodological advancements
in feature space transformation that connect copula theory with unsupervised classification in the presence of hetero-
geneous measurement types.
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