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@ Classical Stationary Methods



Classical Stationary Methods A

Stochastic process and path realization

A univariate real-valued stochastic process defined as

{ Xo—hs oo Xty Xty oo gy - -} = { X} 2 forall

k € N, h € R is a sequence of random variables indexed by
time t, with finite path realization given by

{Xo = X07X1 = X1,X2 = X2,...,Xt = Xt} = {Xt}tho

The classical approach to investigate such processes is given
by considering the following structure:

thmt+sf+ Y;



Classical Stationary Methods A

Strict Stationarity
A stochastic process {X;} is said to be strictly stationary if:

d
(XH ) szv cee 7ka) = (X[Hrha Xt2+h7 cee 7ka+h)

Covariance Stationarity

A stochastic process {X;} is said to be weakly stationary (or
covariance stationary) if:

E[X])=m foral teT

E[X?] < oo forall teT
Cov(X;, Xt1n) =v(h), heT suchthat t+heT



Classical Stationary Methods A

Which methods are available to decompose and analyse
such stochastic processes?

Deterministic time Stochastic time
» Splines ¢ ARMA model
e Polynomial ¢ ARIMA model
interpolation « Etc.

Deterministic
time-frequency
e Fast Fourier

Transform

e Discrete Fourier
Transform

Stochastic
time-frequency

e Fourier transform

o Wavelet
Transform



Classical Stationary Methods A

Fourier transform
+oo )
h(w) = / x(t)e 2t
where h(w) = F[x(t)] is such that h(w) : R — C for any w € R.

Wavelet transform

CWT(a, 7 x,9) = \}5 /:o x(t)* (t_ T) dt

¢ infinite number of « a-priori basis

basis « stationarity or linearity of the

e parametric structure system

What happens if some of these assumptions do not hold?



@® Empirical Mode Decomposition



Empirical Mode Decomposition 4

Given an observed time series {x;}/_,, we construct a
continuous interpolation representation x(t), such that
x(t) € C'[0, T].

Oscillation of x(t)

Given {7}, suchthat0 =7 < 71 <--- <77 = T, we define the
oscillation over each interval X(r;, 7j,1] according to:

OSC()?(T/,T/+1]) = ‘{;N( ) =0:te (7’,,7‘,+1], at (t) 75 OVZ‘}’ = k,' <

withi=0,...,T.

Y

Remark: NO assumptions on stationarity for x(t).

Let K = Z,T:O k; the number of turning points over [0, T].



Empirical Mode Decomposition 4

x(©

time
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Empirical Mode Decomposition 4

Can we find a finite basis decomposition admitting
meaningful time and frequency domain interpretation in
such a framework?

Ans: YES { N. Huang et al., 1998 }

Empirical Mode Decomposition
X(t) can be decomposed as:

K K+1
x(t) = cl (Z ck(t),  Crer(t r(t)>
k=1

where each ck(t) is called Intrinsic Mode Function and r(t) is a final
tendency or residual.

Define the interpolations of maxima and minima of X(t) as upper
envelope M(t) and lower envelope m(t) respectively and the mean
envelope as d(t) = YOm0,
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Empirical Mode Decomposition 4

The IMF basis {ck(Z‘)},’f:1 are designed to satisfy the following
two conditions:

e Local symmetry At any point, the mean value of the
envelope defined by the local maxima and the envelope
defined by the local minima is zero.

e QOscillations The number of extrema and the number of
zero-crossings must either equal or differ at most by one.

M(t) > x(t) and X(f) <m(t) Vvt except m9,74,...,7T

The residual r(t) is designed to satisfy the following condition:
The residual is a curve with at most one extremum.

osc(r(t)) € {0,1}
r'(ty>0 or r'(t)y<0 over [0,T]



Empirical Mode Decomposition 4

Instantaneous frequency

1 dfg(t

An analytical signal is defined as z(t) = ck(t) + jy«(t) or
zk (1) = a(t) el where

e ai(t) is the amplitude of z(t)
o Ok(t) = arctan% is the instantaneous phase.

Recall: X(t) = °K_; ck(t) + r(t)

Hilbert transform (Cauchy Principal Value Integral)

yelt) = = lim /+E Glttr) = ot =7)

mesoo [ t




Empirical Mode Decomposition 4

This concept makes sense when the signal z(t) is almost
circular within the complex domain.

The EMD provides such property, therefore after the EMD and
the Hilbert transform each IMF ¢, (t) and X(t) are expressed
respectively as:

ck(t) = Fz’e{ak(t)exp <j/27rfk(t)dt>}

K+1

%(t) = Re{z a(1)exp (j/27rfk(t)dt> }

k=1
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Constructing EMD "

@ Step 1 Find local extrema of x(t)

® Step 2 Compute the upper envelope M(t) and the lower
envelope m(t) by employing spline interpolations (cubic, akima,
b-spline, etc.)

i v & M(t t
© Step 3 Update the signal X(t) « %(t) — M1m(®
O Step 4 Repeat 1, 2 and 3 until achieving an IMF c(t)

© Step 5 Subtract the obtained IMF from the signal
X(t) < X(t) — k(1)

® Step 6 Repeat 1-5 until achieving a tendency
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Constructing EMD "

19/35



Constructing EMD "
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Constructing EMD
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Constructing EMD
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Constructing EMD

x(t)
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Constructing EMD
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Constructing EMD "
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Constructing EMD "
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@ A speech analysis application
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A speech analysis application

Human voice signal
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A speech analysis application "
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A speech analysis application "

Classifier features:
¢ Intrinsic Mode Functions: c¢i(t), cx(f), ..., r(t).
« Instantaneous frequencies: fi(t), &(f), ... , f(1).
» Coefficients splines used to represent the IMFs.
« Classical Statistics.
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Conclusion N

» Exploiting an a posteriori time-frequency decomposition for
non-stationary and non-linear systems with minimal
restrictions.

¢ A close form of the Huang-Hilbert transform leading to a
close form of the instantaneous frequency.

o Study of the constructing algorithm and its performances
according to its heuristic rules (future research aimed to
improve it).

¢ Using such a decomposition for features extraction and
classification.

A speech analysis application.
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