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1. Context
Functional Anomaly Detection Setting:
• Multivariate functional data X ∈ Fd

such that X(t) ∈ Rd, ∀t ∈ [0, 1].
• Data observed as X ={

xi(t1), . . . , xi(tp)
}n

i=1
on a finite dis-

cretization.
Functional Isolation Forest1 (FIF) has lim-
itations: its inner product and dictionary
choices significantly impact performance.
We introduce Signature Isolation Forest
leveraging rough path theory2.

2. Contributions
Two new Functional Anomaly Detection
(FAD) algorithms based on isolation forest
structure and the signature approach:
• Kernel Signature Isolation Forest (K-SIF):

Extension of Functional Isolation Forest (FIF)
based on the kernel signature.

• Signature Isolation Forest (SIF): Isolation
Forest based algorithm relying on the coordi-
nate signature.

3. Signature Method
Let X ∈ Fd be a r.v. of bounded variation. For

any set of coordinates {i1, . . . , ik} ⊂ {1, . . . , d}k, k ∈
N∗, and [s, t] ⊂ [0, 1], the associated coordinate sig-
nature4 is defined by:

S(i1,...,ik)
(X)[s,t] =

∫
· · ·

∫
s≤u1<...<uk≤t

dXi1
u1

. . . dX
ik
uk

(1)

Given an order of truncation k ∈ N∗, the truncated
signature is the vector of finite length:

Sk(X) =
(
1, S1(X), . . . , Sd(X),

S(1,1)(X), . . . , S(d,...,d)(X)
)
∈ RC (2)

where C =
∣∣{1, . . . , d}≤k
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Geometric visualization of depth-2 signature terms, where
S(1,2) (cyan region) and S(2,1) (purple region) represent

areas corresponding to coordinate signatures.
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4. Kernel Truncated Signature
The signature can be seen as a feature map3 that

embeds a function or a path into the tensor algebra. It
is defined as the map Kk : Fd ×Fd → R such that

Kk(X,Y) = ⟨Sk(X), Sk(Y)⟩.

It captures non-linear relationships by embedding
paths in higher-dimensional space, preserving
sequential information and allowing comparison
through geometric properties. This formulation
effectively detects complex patterns in functional
data.

5. Kernel-SIF
Input: Subsample {xij}mj=1, dictionary D, mea-
sure ν, signature level k, split windows ω.
(a) Root node (0, 0) corresponds to C0,0 = Fd.
(b) If node (p, q) is terminal, stop; otherwise go
to (c).
(c) Split node (p, q) as follows:

1. Choose d from D according to ν.

2. Select γ uniformly from[
min

x∈Xp,q

⟨Sk(x), Sk(d)⟩,

max
x∈Xp,q

⟨Sk(x), Sk(d)⟩
]

3. Form children subsets and datasets:

Cp+1,2q = Cp,q ∩ CL
K-SIF

Cp+1,2q+1 = Cp,q ∩ CR
K-SIF

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1

(d) Apply steps (b)-(c) to nodes (p + 1, 2q) and
(p+ 1, 2q + 1)

Output: Partition (C0,0, C1,1, . . . )

6. Signature Isolation Forest
Input: Subsample {xij}mj=1, signature level k,
split windows ω.
(a) Root node (0, 0) corresponds to C0,0 = Fd.
(b) If node (p, q) is terminal, stop; otherwise go
to (c).
(c) Split node (p, q) as follows:

1. Choose coordinate (i1, . . . , iℓ) uniformly
from {(i1, . . . , iℓ) ∈ J1, dKℓ; 1 ≤ ℓ ≤ k}.

2. Select γ uniformly from[
min

x∈Xp,q

S(i1,...,iℓ)(x), max
x∈Xp,q

S(i1,...,iℓ)(x)

]
3. Form children subsets and datasets:

Cp+1,2q = Cp,q ∩ CL
SIF

Cp+1,2q+1 = Cp,q ∩ CR
SIF

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1

(d) Apply steps (b)-(c) to nodes (p + 1, 2q) and
(p+ 1, 2q + 1)

Output: Partition (C0,0, C1,1, . . . )

7. Parameter Analysis
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Key Findings:
• Split Windows (ω):

– Critical for isolated anomalies - perfor-
mance improves with more windows

– Less important for persistent anomalies -
stable across window counts

– Optimal setting ω = 10 balances perfor-
mance and computational cost

• Truncation Level (k):
– k = 1: Captures only displacements (often

insufficient)
– k = 2: Includes path area information

(good balance)
– k > 2: Diminishing returns relative to com-

putational cost

8. Real-World Performance
Dataset SIF K-SIFC K-SIFB FIFB

Chinatown 1.00 0.99 1.00 0.83
SonyRobotAI1 0.99 0.95 0.95 0.76
SonyRobotAI2 0.93 0.92 0.93 0.84
ECGFiveDays 0.93 0.92 0.90 0.93
ECG5000 0.90 0.97 0.91 0.88

AUROC values on selected datasets
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Performance gains: K-SIFB vs FIFB (positive values =
K-SIF better)

Computational Cost:

Method SIF/K-SIF AutoE AnoGan

Handoutlines 30-50s 593s 681s
StarLightC. 13-20s 202s 500s

Signature methods are 10-30× faster than deep learning

9. Conclusion
• Novel Methods: Two functional anomaly detection

algorithms using signatures
• Key Advantages: K-SIF offers non-linear projec-

tions; SIF provides dictionary-free detection; both
excel with sequential patterns

• Results: SIF achieves top performance on 50% of
datasets; both methods show 5-10× speed improve-
ment over deep learning

• Impact: Robust solution for functional anomaly de-
tection with temporal ordering and non-linear pat-
terns


