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Abstract

Functional Isolation Forest (FIF) is a recent
state-of-the-art Anomaly Detection (AD) al-
gorithm designed for functional data. It relies
on a tree partition procedure where an ab-
normality score is computed by projecting
each curve observation on a drawn dictionary
through a linear inner product. Such linear
inner product and the dictionary are a priori
choices that highly influence the algorithm’s
performances and might lead to unreliable
results, particularly with complex datasets.
This work addresses these challenges by in-
troducing Signature Isolation Forest, a novel
AD algorithm class leveraging the rough path
theory’s signature transform. Our objective
is to remove the constraints imposed by FIF
through the proposition of two algorithms
which specifically target the linearity of the
FIF inner product and the choice of the dic-
tionary. We provide several numerical ex-
periments, including a real-world applications
benchmark showing the relevance of our meth-
ods.

1 Introduction

The development of sophisticated anomaly detection
(AD) methods plays a central role in many areas of
statistical machine learning, see Chandola et al. (2009).
The area of AD is growing increasingly complex, es-
pecially in large data applications such as in network
science or functional data analysis.

In the classical AD multivariate scenario, observations

can be represented as points in Rd and various method-
ologies have been introduced in the literature. A
model-based approach is favored when there is knowl-
edge about the data-generating process (Rousseeuw
and Driessen, 1999). Conversely, in numerous real-
world applications where the underlying data system
is unknown, nonparametric approaches are preferred
(Polonik, 1997; Schölkopf et al., 2001).

The area of AD is only just beginning to explore the
domain of functional data. Functional data is becom-
ing an important discipline in topological data analysis
and data science, see Ramsay and Silverman (2005);
Ferraty (2006) or Wang et al. (2016) for more details.
In essence, functional data involves treating observa-
tions as entire functions, curves, or paths. In some
application domains, this approach can provide richer
information than just a sequence of data observation
vectors, yet it comes with challenges, especially when
considering the development of AD methods.

In the use of AD within a functional data context,
the anomaly detection task involves identifying which
functions/curves differ significantly in the data to be
considered anomalous in some sense. Following Hu-
bert et al. (2015), three types of basic anomalies can
be detected: shift, shape, amplitude. These anomalies
can then be isolated/transient or persistent depend-
ing on the frequency of their occurrences. Some are
easier/more difficult to identify than others, e.g. an
isolated anomaly in shape is much more complex than
a persistent anomaly in amplitude.

At first sight, one may adopt a preliminary filtering
technique. This leads to projecting the functional data
onto a suitable finite-dimensional function subspace.
It can be done by projecting onto a predefined basis
such as Fourier or Wavelets or on a data-dependent
Karhunen-Loeve basis by means of Functional Princi-
pal Component Analysis (FPCA; Dauxois et al., 1982;
Shang, 2014). The coefficients describing this subspace
are then used as input into a specific anomaly detection
algorithm designed for multivariate data.
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In this approach, the a priori choice of basis to under-
take the projection can significantly influence the ability
to detect particular types of anomalies in the functional
data accurately. This makes these approaches sensitive
to such choices. In other words, the choice of a given
bases for projection can artificially amplify specific
patterns or make others disappear entirely, depending
on their properties. Therefore, it is a choice highly
sensitive to the knowledge of the underlying studied
process, which is a must for such an AD method to
work.

If one seeks to avoid this projection methods that take
functional data to a parameter vector space to under-
take the AD method, one may alternatively seek AD
methods working directly in the function space. This
is the case of functional data depth, which takes as
input a curve and a dataset of curves and returns a
score indicating how deep the curve w.r.t. the dataset
is. Many functional data depths, with different formu-
lations, have been designed so far, such as, among oth-
ers, the functional Tukey depth (Fraiman and Muniz,
2001; Claeskens et al., 2014), the Functional Stahel-
Donoho Outlyingness (Hubert et al., 2015), the ACH
depth Staerman et al. (2020), the band depth (López-
Pintado and Romo, 2009) or the half-region depth
(López-Pintado and Romo, 2011); see Nieto-Reyes and
Battey (2016); Gijbels and Nagy (2017) or the Chapter
3 of Staerman (2022) for a detailed review of functional
depths.

One may also extend the classical anomaly detection
algorithms designed for multivariate data such as the
one-class SVM (OCSVM; Schölkopf et al., 2001), Local
Outlier Factor (LOF; Breunig et al., 2000) or Isolation
Forest (IF; Liu et al., 2008) to the functional setting,
see Rossi and Villa (2006). Recently, Staerman et al.
(2019) introduced a novel algorithm, Functional Iso-
lation Forest (FIF), which extends the popular IF to
an infinite-dimensional case. It faces the challenge
of adaptively (randomly) partitioning the functional
space to separate trajectories in an iterative partition.
Based on the computational advantages of random tree-
based structures and their flexibility in choosing the
split criterion related to functional properties of the
data, it has been considered a powerful and promising
approach for functional anomaly detection (Staerman
et al., 2023).

Although FIF offers a robust solution for functional
data, three main challenges arise when it is applied in
practice. Firstly, the selection of two critical parame-
ters involved in the splitting criterion: the functional
inner product and the dictionary of time-frequency
atoms for data representation. The choice of these
elements significantly influences the algorithm’s per-
formance, potentially compromising its flexibility. Sec-

ondly, the splitting criterion is formulated as a linear
transformation of the dictionary function and a sample
curve, potentially constrained in capturing more com-
plex data, including non-stationary processes. Thirdly,
when dealing with multivariate functions, FIF takes
into account dimension dependency only linearly by
using the sum of the inner product of each marginal
as a multivariate inner product and may not capture
complex interactions of the multivariate process. It
is crucial to address these challenges to enhance the
overall efficacy and adaptability of the FIF algorithm
in practical applications.

In response to the above challenges, we propose a new
class of algorithms, named (Kernel-) Signature
Isolation Forest, by leveraging the signature tech-
nique derived from rough path theory (Lyons et al.,
2007; Friz and Victoir, 2010). In rough path theory,
functions are usually referred to as paths to characterize
their geometrical properties. The signature transform,
or signature of a path, summarizes the temporal (or
sequential) information of the paths. In practice, it cap-
tures the sequencing of events and the path’s visitation
order to locations. Yet, it entirely disregards the param-
eterization of the data, providing flexibility regarding
the partial observation points of the underlying func-
tions/paths. Consider a path in a multidimensional
space of dimension d, i.e. x ∈ Fd, where the path
consists of a sequence of data points. The signature
of this path is a collection of iterated integrals of the
path with respect to time. By including these iterated
integrals up to a certain level, the signature provides a
concise and informative representation of the path, al-
lowing for extracting meaningful features. This makes
it particularly useful in analyzing sequential data, such
as time series. The idea behind such a transform is to
produce a feature summary of the data system, which
captures the main events of the data and the order in
which they happen, without recording when they occur
precisely (Lyons and McLeod, 2022). Performances of
signature-based approaches appear to be promising, as
they achieve state-of-the-art in some applications such
as handwriting recognition (Wilson-Nunn et al., 2018;
Yang et al., 2016b), action recognition (Yang et al.,
2016a), and medical time series prediction tasks (Mor-
rill et al., 2019). Surprisingly, it has been overlooked
in the Machine Learning problems and has never been
used in functional anomaly detection until we make
this novel connection.

Our idea is to perform anomaly detection by isolating
multivariate functions corresponding to sets of paths
subject to the signature transform. Hence, the tree
partitioning of FIF will now take place on the feature
space of the signature transform. In such a way, the
functional data changes are captured by embedding the
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studied data set into a path whose changes are then
summarized by the signature method. We propose two
different algorithms named Kernel Signature Iso-
lation Forest (K-SIF) and Signature Isolation
Forest (SIF). The first algorithm extends the FIF
procedure to nonlinear transformations by using the
signature kernel instead of the inner product of FIF. Re-
lying on the attractive properties of the signature, see
Fermanian (2021); Lyons and McLeod (2022) or Section
2.2, our algorithms take into account higher moments
of the functions (derivative, second-order derivative,
etc.) hence accommodating changes (or oscillations)
of different nature. The second algorithm is a more
straightforward procedure relying on what is usually
referred to as ‘coordinate signature’, defined in Section
2, and being free of any sensitive parameters such as
the dictionary (for FIF and K-SIF) and the inner prod-
uct (for FIF). It removes the performance variability
of the parameters used in FIF.

• We introduce two functional anomaly detection
algorithms (K-SIF and SIF) based on the isolation
forest structure and the signature approach from
rough path theory.

• The two algorithms provide improvements in the
functional anomaly detection community by ex-
tending Functional Isolation Forest in two direc-
tions: the first one considers non-linear properties
of the underlying data, hence providing a more
suitable procedure for a more challenging dataset;
the second one is an entirely data-driven technique
free from any a priori choice due to a dictionary
selection constraining the functional AD procedure
to identify only specific types of patterns.

• After studying the behavior of our class of algo-
rithm regarding their parameters, we highlight the
benefits of using (K-)SIF over FIF. On a com-
petitive benchmark, we show that K-SIF, which
extends the FIF procedure through the signature
kernel, consistently showed the results of FIF on
real-world datasets. Furthermore, we show that
SIF achieves state-of-the-art performances while
being more consistent than FIF.

2 Background & Preliminaries

Consider the functional random variable (r.v.) X, tak-
ing values in the functional space Fd(I) of real val-
ued functions (e.g. the Kolmogorov space C(I) or the
Hilbert space L2(I)) where I ⊂ R represents an interval,
such that

X : Ω −→ Fd(I)

ω 7−→ X(ω) = (Xt(ω))t∈I.

Note that throughout the rest of the paper, we will
denote Fd(I) = Fd for simplicity. Without loss of
generality, we restrict our functions to be defined on
[0, 1]. In this paper, we assume Fd to be the space
of bounded variation functions. A function x ∈ Fd

is said to be of bounded variation if for any dis-
cretization subset, the sum of differences is finite, i.e.
sup
D

∑
ti∈D ||xti − xti−1

|| < ∞ where || · || is the Eu-

clidean norm of Rd and the set discretization set D is
defined as

D = {(t0, . . . , tm) | 0 = t0 < t1 < . . . < tk−1 < tm = 1}.

In practice, only a finite-dimensional marginal,
(Xt1 , Xt2 , . . . , Xtp) with t1 < · · · < tp and (t1, . . . , tp) ∈
[0, 1]p, can be observed. To consider a function, rather
than a set of discrete values, approximation or interpo-
lation procedures are usually used and combined with a
preliminary smoothing step when the observations are
noisy. Denote by X a reconstructed dataset of interpo-
lated curves/functions X = {x1, . . . ,xn} from the set
of observations {xi,t1 , xi,t2 , . . . , xi,tp}ni=1.The problem
of functional anomaly detection can be formulated as
learning a score function s : Fd → R from X reflecting
the degree of abnormality of any element of an infinite
dimensional space Fd w.r.t. X .

2.1 Functional Isolation Forest

Consider H the functional Hilbert space equipped with
a inner product ⟨., .⟩H such that any x ∈ H is a real
function defined on [0, 1]. A Functional Isolation Forest
is created through an assembly of functional isolation
trees (F-itrees). Each F-itree is constructed via a series
of random splits from a subsample (of size m) of Xn.
The abnormality score for an observation x is then de-
termined as a monotonically decreasing transformation
of x’s average depth across the trees. The core concept
lies in the randomness of the splits, where an observa-
tion markedly different from others is more likely to be
isolated from Xn, appearing at shallower levels in the F-
itrees. The F-itrees are built based on a predetermined
dictionary D ⊂ H, encompassing both deterministic
and/or stochastic functions capturing pertinent data
properties, which may also be a subset of Xn. Before
each random univariate split, all node observations are
projected onto a line defined by a randomly selected
element from the dictionary D. The selection of a suit-
able dictionary plays a pivotal role in shaping the FIF
score construction. The projection criterion at each
node of each F-itree is defined as:

⟨x,d⟩H = α×
⟨x,d⟩

L2

||x||||d||
+ (1− α)×

⟨x′,d′⟩
L2

||x′||||d′||
,

where x′,d′ are derivative and ||x|| is the L2 norm of
x ∈ L2([0, 1]). When multivariate functional data are
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considered, the inner product employed is the sum of
the marginal inner product accross the dimension i.e.
⟨x,d⟩Hd =

∑d
i=1⟨x(i),d(i)⟩H. The tree structure is

equivalent to our algorithms and will be further detail
in Section 3. For more detail about FIF specification,
we refer the reader to Staerman et al. (2019).

2.2 The Signature Method

The signature of a path is a sequence of iterated inte-
grals that captures important information about the
path’s geometric and topological features (Lyons et al.,
2007; Fermanian, 2021).

Definition 2.1. Let X ∈ Fd be a r.v. of bounded
variation. For any set of coordinates {i1, . . . , ik} ⊂
{1, . . . , d}k, k ∈ N∗, and [s, t] ⊂ [0, 1], the associated
coordinate signature is defined by

S(i1,...,ik)(X)[s,t] =

∫
· · ·

∫
s≤u1<...<uk≤t

dXi1
u1

. . . dXik
uk
.

Furthermore, the signature of X is defined as the infi-
nite collection of coordinate signature

S(X) =
(
1, S1(X), . . . , Sd(X),

S(1,1)(X), S(1,2)(X), . . . , S(d,d)(X),

S(1,1,1)(X), S(1,2,1)(X), . . . , S(d,d,d)(X), . . .
)
.

Truncated Signature. In practice, to be computable
the truncated signature is used. Given an order of
truncation k ∈ N∗, it is defined as the signature vector
of finite length of dimension C =

∣∣{1, . . . , d}k∣∣ given
by

Sk(X) =
(
1, S1(X), . . . , Sd(X), S(1,1)(X), S(1,2)(X), . . . ,

S(d,d)(X), . . . , S(d, . . . , d)︸ ︷︷ ︸
k

(X)
)
∈ RC .

Kernel Truncated Signature. The signature can
be seen as a feature map that embeds a function or a
path into the tensor algebra. The truncated signature
kernel has been recently introduced and studied in
Király and Oberhauser (2019). It is defined as the map
Kk : Fd ×Fd → R such that

Kk(X,Y) = ⟨Sk(X), Sk(Y)⟩. (1)

One may refer to Lee and Oberhauser (2023) for an
account of the untruncated kernel signature. See also
Section 1 in the Appendix for further details about the
signature and its properties.

3 Signature Isolation Forest Methods

With Kernel Signature Isolation Forest (K-SIF), we aim
to leverage the truncated kernel signature (Király and

Oberhauser, 2019) to overcome the linearity constraint
imposed by the inner product in FIF. In contrast to
FIF, which explores only one function characteristic
at each node using a unique inner product with the
function sampled in the dictionary, K-SIF captures
significantly more information. This is achieved by
computing several coefficient signatures, summarizing
multiple data attributes at each node.

The ability to explore non-linear directions in the fea-
ture space through the kernel signature makes the al-
gorithm more efficient for an equivalent computational
cost (refer to Figure 6 in the Appendix).

∆X1
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2

S(2,1)

S(1,2)

0
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0 2 4 6 8 10 12 14 16
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X

2

Figure 1: Geometric visualization of depth-2 signature
terms, where S(1,2) (cyan region) and S(2,1) (purple
region) represent areas corresponding to coordinate sig-
natures. The displacement term ∆X1 and ∆X2 along
each axis capture the depth-1 terms of the transform.

With Signature Isolation Forest (SIF), the aim is to
leverage the coordinate signature and remove any re-
strictions imposed by FIF and K-SIF. We replace the
use of a dictionary D and rely on the coordinate sig-
nature only to detect anomalies. The intuition is to
provide a more straightforward, entirely data-driven
solution and remove any a priori required choice.

The construction procedures of (K-)SIF are now de-
scribed.

The objective of (K-)SIF is to construct a collection
of (kernel) signature isolation trees, abbreviated by
(k)si -trees, obtained from X = {x1, . . . ,xn}, a training
sample composed of independent realizations of X tak-
ing values in the space Fd. If the dataset is too big,
then a subsampling step can be performed to avoid
masking or swamping effects (Chandola et al., 2009).
This provides a subsample Xsub = {xi1 , . . . ,xim} of
size m drawn randomly and uniformly to construct
each tree. The global structure of a tree remains equiv-
alent whether for a ksi -tree or a si -tree and is formally
defined as follows.

Definition 3.1. A (k)si-tree τ of depth P ≥ 1 is
a binary tree corresponding to a nested sequence of
partitions of the functional space Fd.



Marta Campi1, Guillaume Staerman2, Gareth W. Peters3, Tomoko Matsui4

Tree Construction. Each (k)si -tree is obtained by re-
cursively filtering Xsub, by means of a signature-based
criterion, in a top-down fashion according to the pro-
cedure here presented. Such a tree starts with a root
node, or initial node, corresponding to the entire fea-
ture space and given by C0,0 = Fd. Any other node
encountered during the procedure will be denoted by
the pair (p, q) where p is the index of the depth of
the node (i.e. at which splitting node the algorithm
has branched) with 0 ≤ p < P , while q is linked to
the subset Cp,q ⊂ Fd with 0 ≤ q ≤ 2p − 1. A non-
terminal node (p, q) has two children corresponding
to two disjoint subset Cp+1,2q and Cp+1,2q+1 such that
Cp,q = Cp+1,2q ∪ Cp+1,2q+1. A node (p, q) is said to be
terminal if it has no children.

Splitting Criterion. The difference between a ksi-
tree and a si -tree lies in the splitting criterion computed
at each node of both trees. Below, we detail the split-
ting procedures occurring at a particular internal node
for both algorithms.

Kernel Signature Isolation Forest. Due to the
truncated signature use, the depth of this truncation
level k must be a priori chosen. Whilst the SIF does
not require a dictionary specification, the K-SIF ap-
proaches algorithm involves as parameters a dictionary
D ⊂ Fd, which is chosen to be rich enough to represent
properties of the data considered and a probability
measure ν on D. Here we use the three standard dic-
tionaries of FIF (Staerman et al., 2019): ‘Brownian’, a
dictionary of standard Brownian motion paths (corre-
sponding to the space of continuous functions with the
Wiener measure ν), ‘Gaussian wavelets’ representing a
Mexican hat wavelet basis and ‘Cosine’ that is a cosine
basis. In the latter two dictionary cases the probability
measure ν is usually uniform over the class of dictio-
nary functions, which is suitable as an uniformative
measure a priori.

The dataset at node (p, q) is denoted at Xp,q. At itera-
tion q+2p of the ksi -tree construction, a split variable is
selected by drawing a function d from D ⊂ Fd accord-
ing to a distribution ν. The data are then projected
on such dictionary but through the signature kernel
embedding, i.e. for a given d ∈ D (where d represents
a function sampled from D at each split) the projection
of a sole function x considering the kernel signature
is given according to the truncated signature kernel
defined earlier in Eqn. 1 applied to x and dictionary
item d.This is performed ∀x ∈ Xp,q and k is a priori
chosen.

The following step is to choose uniformly and at random
a split value γ such that

γ ∈
[
min

x∈Xp,q

⟨Sk(x), Sk(d)⟩, max
x∈Xp,q

⟨Sk(x), Sk(d)⟩
]
.

Then the algorithm can split Xp,q and generate a new
node where the the children subsets are then defined by
Cp+1,2q = Cp,q ∩ CL

K-SIF and Cp+1,2q+1 = Cp,q ∩ CR
K-SIF

with L and R indicating left and right subset splits
given as

CL
K-SIF ={x ∈ Fd : ⟨Sk(x), Sk(d)⟩ ≤ γ}

CR
K-SIF ={x ∈ Fd : ⟨Sk(x), Sk(d)⟩ > γ}.

The children datasets are given as

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1.

A ksi -tree is built by iterating this procedure until all
training data curves are isolated.

Signature Isolation Forest. In contrast to ksi -trees,
the definition of a si -tree will rely on using a different
split criterion, expressed according to the following
procedure. Once again, the depth of the truncation
level k has to be chosen a priori, but no dictionaries
nor distribution has to be set. Here, at each internal
node (p, q), a coordinate (i1, . . . , iℓ) is chosen randomly
and uniformly in the set

{(i1, . . . , iℓ) ∈ J1, dKℓ; 1 ≤ ℓ ≤ k}.

Note that the coordinates may be chosen according to
a specific law with additional a priori knowledge of the
data, allowing the coordinate signature to discriminate
particular aspects of the functions. Thereafter, this
coordinate signature is computed across Xp,q and a
split value γ is chosen uniformly such that

γ ∈
[
min

x∈Xp,q

S(i1,...,iℓ)(x), max
x∈Xp,q

S(i1,...,iℓ)(x)

]
.

Then the algorithm can split Xp,q and generate a new
node where the the children subsets are then defined
by Cp+1,2q = Cp,q ∩ CL

SIF and Cp+1,2q+1 = Cp,q ∩ CR
SIF

with L and R indicating left and right subset splits
given as

CL
SIF ={x ∈ Fd : S(i1,...,iℓ)(x) ≤ γ}

CR
SIF ={x ∈ Fd : S(i1,...,iℓ)(x) > γ}.

The children datasets are given as

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1.

A si -tree is also built by iterating this procedure until
all training data curves are isolated. The two algo-
rithms of K-SIF and SIF are summarized in Section 1
in the Appendix.



Signature Isolation Forest

Anomaly Score. As the terminal nodes of a (k)si-
trees τ form a partition of the feature space, we can
define the piecewise constant function hτ : Fd → N by:

hτ (x) = p iff x ∈ Cp,q and (p, q) is a terminal node.

This random path length offers an indication for the
degree of abnormality: the more abnormal x is, the
higher the probability that the quantity hτ (x) is small.
K-SIF (resp. SIF) build a collection τ1, . . . , τN of N
ksi-trees (resp. si-tree). Given a x ∈ Fd, following
Liu et al. (2008) and Staerman et al. (2019), we can
define the monotone transformation of the averaged
path length over the trees:

sn(x) = 2−
1

Nc(m)

∑N
l=1 hτl

(x),

where c(m) is the average path length of unsuccessful
searches in a binary search tree and m the size of the
subsample linked to each tree.

Parameters of K-SIF and SIF. For both algorithms,
key parameters typical of isolation forest-based meth-
ods, such as the number of trees N or the subsample
size m, must be pre-selected (Liu et al., 2008). The
truncated level k of the signature depth must also be
chosen. In the case of K-SIF, similar to FIF, selecting
a dictionary D and a distribution ν is required. We opt
to implement three standard dictionaries (also utilized
in FIF): ‘Brownian’, representing a traditional Brow-
nian motion path; ‘Cosine’, employing a cosine basis;
and ‘Gaussian wavelets’, utilizing a Gaussian wavelets
basis. In contrast, SIF does not require any of these
sensitive parameters. We follow the approach outlined
in Morrill et al. (2019) to enhance the algorithms’ per-
formance by introducing a split window parameter ω.
This implies that, at each tree node, the truncated
signature is computed on a randomly selected portion
of the functions with a size of ⌊p/ω⌋.

4 Numerical Experiments

This section presents a series of numerical experiments
supporting the proposed class of AD methods. We
organize the experiments into three categories. First, a
parameter sensitivity analysis sheds light on the behav-
ior of the parameters algorithms and provides insights
for achieving optimal performances. Subsequently, we
compare (K-)SIF and FIF, illustrating the validity of
such methods and showcasing the power of the signa-
ture in the context of AD solutions. Finally, we perform
a benchmark that compares several existing AD meth-
ods on various real datasets. This benchmark aims to
demonstrate the results in real applications and assess
the overall performance of these algorithms relative to
other AD methods documented in the literature.

4.1 Parameters Sensitivity Analysis

We investigate the behavior of K-SIF and SIF with
respect to their two main parameters: the depth of
the signature k and the number of split windows ω.
For the sake of place, the experiment on the depth is
postponed in Section 3.1 in the Appendix.

The Role of the Signature Split Window. The
number of split windows allows the extraction of in-
formation over specific intervals (randomly selected)
of the underlying data. Thus, at each tree node, the
focus will be on a particular portion of the data, which
is the same across all the sample curves for comparison
purposes. This approach ensures that the analysis is
performed on comparable sections of the data, provid-
ing a systematic way to examine and compare different
intervals or features across the sample curves.

We explore the role of this parameter with two different
datasets that reproduce two types of anomaly scenarios.
The first considers isolated anomalies in a small interval,
while the second contains persistent ones across all the
function parametrization. In this way, we observe the
behavior of K-SIF and SIF with respect to different
types of anomalies.

The first dataset is constructed as follows. We sim-
ulate 100 constant functions. We then select at ran-
dom 90% of these curves and Gaussian noise on a
sub-interval; for the remaining 10% of the curves, we
add Gaussian noise on another sub-interval, differ-
ent from the first one. More precisely: 90% of the
curves, considered as normal, are generated according
to x(t) = b+ ε(t)I(t ∈ [0.3, 0.6]), with ε(t) ∼ N (0, 1),
b ∼ U([0, 100]) and U representing the uniform distri-
bution; 10% of the curves, considered as abnormal, are
generated according to x(t) = b+ ε(t)I(t ∈ [0.7, 0.8]),
where ε(t) ∼ N (0, 1) and b ∼ U([0, 100]).

The second dataset is constructed as follows. We gen-
erate 100 one-dimensional Brownian motion paths. We
remark that a stochastic process Bt follows a Brownian
motion if it satisfies the following stochastic differential
equation dBt = µdt+ σdXt, where Xt is a Wiener pro-
cess or Brownian motion (with distribution N (0, 1)).

We simulate at random 90% of the paths with µ = 0,
σ = 0.5, and consider them as normal data. Then,
the remaining 10% are simulated with drift µ = 0.2,
standard deviation σ = 0.4, and considered abnormal
data. We compute K-SIF with different numbers of
split windows, varying from 1 to 10, with a truncation
level set equal to 2 and N = 1, 000 the number of trees.
The experiment is repeated 100 times, and we report
the averaged AUC under the ROC curves in Figure 2
for both datasets and three pre-selected dictionaries.

For the first dataset, where anomalies manifest in a
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small portion of the functions, increasing the number
of splits significantly enhances the algorithm’s perfor-
mance in detecting anomalies. The performance im-
provement shows a plateau after nine split windows. In
the case of the second dataset with persistent anomalies,
a higher number of split windows has a marginal impact
on the algorithm’s performance, maintaining satisfac-
tory results. Therefore, without prior knowledge about
the data, opting for a relatively high number of split
windows, such as 10, would ensure robust performance
in both scenarios. Additionally, a more significant num-
ber of split windows enables the computation of the
signature on a smaller portion of the functions, leading
to improved computational efficiency.

2 4 6 8 10Number of splits
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

KSIF with kernel
Brownian
Cosine
Gaussian Wavelets
SIF

KSIF with kernel
Brownian
Cosine
Gaussian Wavelets
SIF

2 4 6 8 10Number of splits
0.75

0.80

0.85

0.90

0.95

1.00

Figure 2: AUC for the ROC curve w.r.t. the number of
split window on the first (top) and the second (bottom)
datasets for the three dictionaries.

4.2 (K-)SIF detects Swap Order Variation
Changes

The signature method considers the order of occur-
ring events in functional data. To investigate this
phenomenon with our proposed class of algorithms,
we define a synthetic dataset of 100 smooth func-
tions given by x(t) = 30tq(1 − t)q, with t ∈ [0, 1]
and q equispaced in [1, 1.4]. Then, we simulate the
occurrences of events by adding Gaussian noise on
different portions of the functions. We randomly se-
lect 90% of them and add Gaussian values on a sub-
interval, i.e., x(t) = 30tq(1− t)q + ε(t)I(t ∈ [0.2, 0.4]),
where ε(t) ∼ N (0, 0.8). We consider the 10% re-
maining as abnormal by adding the same ‘events’

on another sub-interval compared to the first one,
i.e., x(t) = 30tq(1 − t)q + ε(t)I(t ∈ [0.6, 0.8]), where
ε(t) ∼ N (0, 0.8). See Figure 5 in the Appendix for
a dataset visualization. To summarize, we have con-
structed two identical events occurring at different parts
of the functions, leading to isolating anomalies. As
presented in the introduction, this class of anomalous
data are amongst the most challenging to identify.

We compute SIF, K-SIF and FIF with Brownian and
Cosine dictionaries on these simulated datasets. As
indicated in Section 4.1, for (K-)SIF, we choose ω = 10,
the number of split windows, and k = 2, the depth
of the signature. In Figure 3, we report boxplots of
the anomaly score returned by the algorithms for the
normal data in purple and abnormal data in yellow.
While this could appear a very simple task, in prac-
tice, it is highly challenging for an AD algorithm to
differentiate such classes of curves. The introduction of
the signature method should tackle precisely this type
of scenario, since taking into account the order of the
events.
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Figure 3: Anomaly score for normal (purple) and ab-
normal (yellow) data for SIF, K-SIF and FIF with
Brownian and Cosine dictionaries.

Using both dictionaries, FIF fails to detect this anomaly
as it is not designed to handle these type of phenomena.
In contrast, K-SIF and SIF produce significantly dis-
tinguished scores between normal and abnormal data,
efficiently classifying the second data class as anomaly.

4.3 Real-data Anomaly Detection Benchmark

To evaluate the effectiveness of the proposed (K-)SIF
algorithms and provide a comparison with FIF, we
perform a comparative analysis using ten anomaly de-
tection datasets constructed in Staerman et al. (2019)
and sourced from the UCR repository (Chen et al.,
2015). In contrast to Staerman et al. (2019), we do
not use a training/test part since the labels are not
used for the training and train and evaluate models
on the training data only. We evaluate the algorithms’
performance by quantifying the Area under the ROC
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Methods: SIF K-SIFGW K-SIFC K-SIFB IF OCSVM fHD fSDO DeepSVDD AnoGan AutoEncoder VAE

Chinatown 1 0.90 0.99 1 0.81 0.6 0.73 1 0.5 0.72 1 0.99

Coffee 0.84 0.92 0.85 0.83 0.74 0.76 0.89 0.9 0.55 0.5 0.83 0.83

ECGFiveDays 0.93 0.90 0.92 0.90 0.85 0.93 0.84 0.96 0.67 0.79 0.96 0.96

ECG200 0.85 0.82 0.85 0.83 0.85 0.81 0.83 0.89 0.5 0.72 0.87 0.86

Handoutlines 0.84 0.83 0.83 0.82 0.84 0.83 0.82 0.83 0.63 0.55 0.82 0.82

SonyRobotAI1 0.99 0.96 0.95 0.95 0.96 0.96 0.88 0.96 0.52 0.91 0.95 0.95

SonyRobotAI2 0.93 0.89 0.92 0.93 0.87 0.84 0.84 0.88 0.64 0.87 0.88 0.88

StarLightCurves 0.80 0.75 0.76 0.76 0.72 0.71 0.71 0.79 0.60 0.30 0.76 0.77

TwoLeadECG 0.92 0.92 0.92 0.92 0.78 0.54 0.63 1 0.46 0.68 1 1

ECG5000 0.90 0.92 0.97 0.91 0.94 0.94 0.97 0.92 0.59 0.65 0.92 0.92

Table 1: AUROC of different anomaly detection methods calculated on the test set. Bold numbers correspond to
the best result (higher is better).

Methods: SIF KSIF FIF IF OCSVM fHD fSDO DeepSVDD AnoGan AutoEncoder VAE

Chinatown 0.3 0.5 1.3 0.3 0.3 0.1 0.1 18 78 91 78

Coffee 0.8 1 1.6 0.3 0.3 0.1 0.1 16 88 91 90

ECGFiveDays 0.6 0.6 1.2 0.5 0.6 0.3 0.3 21 84 87 89

ECG200 3 5 9 1 1 0.7 0.7 18 151 91 90

Handoutlines 30 50 90 7 7 2 2 27 681 593 365

SonyRobotAI1 0.8 0.8 1.6 0.5 0.6 0.3 0.3 18 84 95 84

SonyRobotAI2 0.9 0.8 1.6 0.5 0.6 0.3 0.3 19 86 92 82

StarLightCurves 13 20 62 3 5 1 1 22 500 202 175

TwoLeadECG 0.6 0.6 1 0.3 0.3 0.2 0.2 9 75 66 58

ECG5000 5.4 4 15 1 1 0.6 0.6 9 270 102 91

Table 2: Computational time in seconds of different anomaly detection methods calculated on the test set.

curves. For completeness, the FPR at 95% TPR and
the Area under the PR curves are given in Tables 2
and 3 in the Appendix.

K-SIF is examined in the context of three introduced
dictionaries: Brownian, Cosine and Gaussian wavelets,
as done for FIF. The parameters are configured with
N = 100, m = min(256, n), the height limit set to
⌈log2(m)⌉ for both FIF and K-SIF/SIF. The number
of split windows is fixed with ω = 10, and the depth is
fixed with k = 3. We compare the K-SIF/SIF methods
against two widely used multivariate anomaly detec-
tion techniques and two functional depths with default
settings. The multivariate methods, namely, Isolation
Forest (IF; Liu et al., 2008) and one-class support vector
machine (OCSVM; Schölkopf et al., 2001), are applied
following dimension reduction via Functional PCA. We
retain 20 principal components with the largest eigen-
values using the Haar basis. The depths considered
include the random projection halfspace depth (Cuevas
et al., 2007) and the functional Stahel-Donoho outly-
ingness (Hubert et al., 2015).

On one hand, Figure 4 illustrates the performance
disparity between FIF and K-SIF using the Brown-
ian dictionary. Notably, K-SIF exhibits a significant
performance advantage over FIF. This observation un-

derscores the effectiveness of the signature kernel in
improving FIF’s performance across most datasets, em-
phasizing the advantages of utilizing it over a simple
inner product. On the other hand, considering the intri-
cacy of functional data, no unique method is expected
to outperform others universally.

However, SIF demonstrates strong performance in most
cases, achieving the best results for five datasets. In
contrast to FIF and K-SIF, it shows robustness to
the variety of datasets while not being drastically af-
fected by the choice of the parameters involved in FIF
(dictionary and inner product) and K-SIF (dictionary).

Our proposed methods, SIF and KSIF, demonstrate
strong computational efficiency compared to both tra-
ditional and deep learning-based anomaly detection
methods. As shown in Table 6, SIF and KSIF consis-
tently achieve lower execution times than deep learn-
ing approaches, such as AutoEncoder and AnoGan,
which require significantly more computational re-
sources. Notably, on datasets like HandOutlines and
StarLightCurves, KSIF and SIF exhibit a substantial
reduction in processing time compared to deep learning
models, making them more suitable for real-time or
resource-constrained applications. While traditional
methods like IF and OCSVM offer comparable effi-
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Figure 4: Barplot of performance differences with AUC
between K-SIF and FIF with a Brownian motion ker-
nel (positive means K-SIF performs better), the inner
product chose for FIF is L2 (top) and L2 of derivative
(bottom).

ciency, our methods maintain a favorable balance be-
tween speed and detection performance. These results
highlight the advantage of our approach in scenarios
where rapid anomaly detection is critical, reinforcing
its practicality for real-world deployment.

5 Discussion & Conclusion

This work presents two novel anomaly detection algo-
rithms, K-SIF and SIF, rooted in the isolation forest
structure and the signature approach from rough path
theory. Our contributions extend Functional Isolation
Forest in two vital dimensions: incorporating non-linear
properties in data for improved adaptability to challeng-
ing datasets and introducing an entirely data-driven
technique free from predefined dictionaries. Such flexi-
bility accommodates diverse data patterns and reduces
the risk of overlooking certain types of anomalies. In
this way, more complex real data pattern scenarios can
be analysed, where non-linearity is highly present and,
further, the unsupervised settings lacking labels highly
affect the AD task. We demonstrate the advantages
of utilizing K-SIF over FIF through a comprehensive

parameter analysis, with consistent outperformance
on real-world datasets. Notably, SIF achieves state-
of-the-art performance while maintaining simplicity
and computational efficiency, underscoring its effective-
ness in functional anomaly detection. This work offers
valuable advancements in anomaly detection method-
ologies, providing robust solutions for complex and
diverse datasets.
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1 Additional Information About the Signature

In this section, we provide additional information regarding the signature. Firstly, the formula for the coordinate
signature is provided, followed by some further information about the truncated signature and the link of the
signature with moments. We then introduce references and further discussion for the computation of the signature,
the linear-closed form utilised and, lastly, a review of the inner product of tensors required for the signature
method is presented.

Example of Coordinate Signature Formulas. The definition of the signature shows that given X : Fd ⇒ Rd

then these can be calculated recursively as follows

S(i1)(X) =

∫
s<u1<t

dXi1
u1

= Xi1
t −Xi1

s ,

and

S(i1,i2)(X)[s,t] =

∫
s<u1<t

S(i1)(X)[s,u1]dX
i2
u1

=

∫
s<u1<u2<t

dXi1
u1
dXi2

u2
,

and

S(i1,i2,i3)(X)[s,t] =

∫
s<u1<t

S(i1,i2)(X)[s,u1]dX
i3
u1

=

∫
s<u1<u2<u3<t

dXi1
u1
dXi2

u2
dXi3

u3
,

which gives the generic iterative k iterated integral

S(i1,...,ik)(X)[s,t] =

∫
s<u1<t

S(i1,...,ik−1)(X)[s,u1]dX
ik
u1
.

Truncated Signature. The number of coefficients for a multivariate function of dimension d and a level of
truncation k is then equal to

∑k
j=0 d

j if d > 1 and equal to k + 1 if d = 1. It is often convenient to remove
the first coefficient equal to one since it does not provide any relevant information about the function. It is
worth noting that the number of coefficients increases exponentially with k and polynomially with d. Thus, to be
computed in practice, one has to choose a reasonable depth according to the dimension of the underlying data.

Link with Moments. Let X be a stochastic process of bounded variation, authors of Chevyrev and Kormilitzin
(2016) constructed a characteristic function for X as M 7→ E[M(S(X))]. They demonstrated that empirical
statistical moments, such as the empirical mean using the first-order coefficients and variance using the second-
order coefficient, can be explicitly recovered from signature coefficients. They also show that if E[S(X)] is well
defined, then the law of the stochastic process X is entirely determined by E[S(X)]. Thus, the signature serves as
the counterpart of an exponential of the moment-generating function in the context of vector-valued processes,
and signature coefficients of order k can be likened to moments.

Computation of the Signature. The signature is usually computed on the linear paths reconstructed from
observations (Lyons and McLeod, 2022; Fermanian, 2021) thanks to the two properties listed below. First, the
signature benefits from a closed form when computed on linear paths. Second, a concatenation formula has
been provided by Chen (1958), where the coordinate signature of two concatenate segments is given by a tensor
product of the specific coordinate signatures on each segment. These two properties are described formally below.

Linear Closed-Form. Let X ∈ Fd([0, 1]) a linear function such that Xt = (X1
t , . . . , X

d
t ) = (a1+b1t, . . . , ad+bdt).

Then the coordinate signature on [s, t] ⊂ [0, 1] has the following closed-form:

Si1,...,ik(X) =
bi1 . . . bik(t− s)k

k!
. (2)
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Proposition 1.1 (Chen’s Identity, Chen, 1958). Let X ∈ Fd([s, t]) and Y ∈ Fd([s, t]) two functions with bounded
variation. Then for any index (i1, . . . , ik) ⊂ {1, . . . , d}k,

S(i1,...,ik)(X ∗Y) =

k∑
ℓ=0

S(i1,...,iℓ)(X) · S(iℓ+1,...,ik)(Y).

In practice, the signature is usually computed as follows. First, a linear path is reconstructed by interpolation
from the observed data. In a second step, the signature of each segment of the linear path are calculated separately
thanks to the closed-form (2). Then the signature of the entire path is computed recursively using the Chen’s
identity property.

Remark 1.2. The signature kernel is solution of the Goursat PDE for continuously differentiable paths (Salvi
et al., 2021) and then can be approximated by a finite difference scheme. The scheme proposed by Salvi et al.
(2021) involves a computational complexity of O(d2m222λ) where m is the number of observations of the two
functions and λ is the parameter of the dyadic refinements of the grid D ×D. In our case, this computation
occurs at each node of each tree and then the quadratic dependency in d and m may be computationally expensive.
Therefore, we focus on computing the truncated kernel signature, that leads to a linear complexity in both the
dimension d and the observation number m.

Definition of Inner Product of Tensors for Signature Method. Following Chevyrev and Oberhauser
(2022) and Lee and Oberhauser (2023), we introduce the inner product of the tensors required to compute the
truncated signature and its kernel.

Consider a vector space V m such that ∀m ∃ {v1, . . . ,vdm} basis vectors, where dm = |{1, . . . , d}m|. Then, any
vector Sm(X) ∈ V m given as

Sm(X) =

S(1, . . . , 1)︸ ︷︷ ︸
m

(X), . . . , S(d, . . . , d)︸ ︷︷ ︸
m

(X)

 ,

can be expressed as a weighted combination of the basis functions in V m.

Remark now that, if V m, V m′
, are vector spaces (possibly infinite-dimensional), then there exists another vector

space V m ⊗ V m′
and a bilinear map φ : V m × V m′ → V m ⊗ V m′

with the universal property that any other
bilinear map V m×V m′ → W factors uniquely through φ. This map ⊗ is called the tensor product, and we call the
elements of V m ⊗V m′

tensors. In particular, for m ≥ 0, we denote an element of V m ⊗ · · ·⊗V m =
∏N

n=1(V
m)⊗n

a tensor of degree n.

If we then consider S(X) ⊗ S(Y) where S(X) ∈ V m and S(Y) ∈ V m′
, then the so-called tensor convolution

product of S(X)⊗ S(Y) ∈ V m ⊗ V m′
, which is also a vector space with basis vectors given as

{vm
1 ⊗ vm′

1 ,vm
1 ⊗ vm′

2 . . . ,vm
dm

⊗ vm′

d
m

′ }, (3)∏
n≥0(V

m)⊗n represents the most general algebra containing V m Reutenauer (2003). One can also refer to∏k
m=0 V

⊗m which is again a linear space and also forms an algebra with the tensor convolution product given
in Equation 3, restricted to the first k tensors. Following this discussion, then in the notation below, (Rd)⊗m

represents the space of m-tensors in d dimensions.

In practice, there is a natural inner product on Rd by setting

⟨Sk
m(X), Sk

m(Y)⟩m :=
∑

(i1,...,ik)∈{1,...,d}k

S(i1,...,ik)(X) S(i1,...,ik)(Y),

where Sk
m(X), Sk

m(Y) ∈ (Rd)⊗m and m ∈ {1, . . . , k}. Such an inner product can be extended to the subset of∏k
m=1(Rd)⊗m as

⟨Sk(X), Sk(Y)⟩ =
k∑

m=0

⟨Sk
m(X), Sk

m(Y)⟩m,

with Sk(X), Sk(Y) ∈
∏k

m=1(Rd)⊗m. Note that, elements in
∏k

m=1(Rd)⊗m can be tuples where each component
is a tensor of degree m in d dimensions.
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2 K-SIF and SIF Algorithms

This section provides the algorithms for the two proposed methods, Kernel Signature Isolation Forest and
Signature Isolation Forest. The steps for each algorithm are described and presented below, introducing the input
of each procedure and the steps followed to construct the nodes of the partition trees and the children subsets
and datasets. Finally, the output of each method is given. The details of these procedures are provided in the
main paper in Section 3. Note that the ω parameter, corresponding to the number of split windows used for the
signature, is considered as input since it must be chosen for the procedures to advance. Still, it is hidden within
the presentation of the algorithms.

We further provide the following remark to explain what is the main link between the two proposed algorithms.

Remark 2.1 (Link between K-SIF and FIF). The first order coefficients of the signature on an interval
[s, t] ⊂ [0, 1] represent the displacement of the function:

S1(X) =

∫ t

s

dXu1
= Xt −Xs.

Therefore, additional coefficients are needed to discriminate real-world functional data. Given a finite number
of observations of a function, 0 ≤ t1, . . . , tm ≤ 1, and choosing m as the number of splitting windows, the
inner product between the one order signature two functions X and Y with bounded variations is defined as
⟨S1(X), S1(Y)⟩ is equal to the approximation of the inner product ⟨X′,Y′⟩L2

used by FIF (Staerman et al., 2019).
Functional Isolation Forest with α = 0 corresponds to K-SIF with a truncated one-level. Therefore, our approach
generalizes the part of FIF, considering the first moment of the underlying functions.

3 Additional Numerical Experiments

In this section, we present additional numerical experiments in support of the proposed algorithms and arguments
developed in the main body of the paper. First, We describe the signature depth’s role in the algorithms and
explain how this parameter affects them. We provide boxplots for two sets of generated data and argue the
importance of the depth parameter in this context. Afterwards, we provide additional experiments on the
robustness to noise advantage of (K)-SIF over FIF, related to Section 4 of the main body of the paper. The third
paragraph refers to the generated data for the ’swapping events’ experiment in Section 4.2 of the main body of
the paper is shown. We provide a Figure for visualization and a better understanding. We further remark on
how we constructed the data. The fourth subsection then demonstrates the computational time of the proposed
algorithms with a direct comparison to FIF. Then, an additional experiment presenting further evidence for the
discrimination power with respect to the AD task of (K)-SIF over FIF is presented. Finally, the last subsection
shows a Table which describes information about the size of datasets related to the benchmark in Section 4.3.

3.1 The Role of the Signature Depth

All moments of stochastic processes with bounded variations can be characterized by the signature (Chevyrev and
Kormilitzin, 2016). Following this rationale, the truncated signature encapsulates more information with higher
truncation levels. However, increasing the truncated depth comes at the cost of longer computational times,
given that the number of signature coefficients scales with O(dk), which can be restrictive in high-dimensional
settings. Therefore, the choice of the truncation level becomes a trade-off between computational efficiency and
the information retained by the signature.

In this experiment, we investigate the impact of this parameter on K-SIF with two different classes of stochastic
processes. The three-dimensional Brownian motion (with µ = 0 and σ = 0.1), characterized by its two first
moments, and the one-dimensional Merton-jump diffusion process, a heavy-tail process widely used to model
the stock market. In such a way, we compare the former class of stochastic models to the latter, which, instead,
cannot be characterized by the first two moments and observe performances of (K)-SIF in this regard.

We computed K-SIF with three dictionaries with truncation levels varying in {2, 3, 4} for both simulated datasets.
We set the number of split windows to 10, according to the previous section, and the number of trees to 1000.
After that, we computed the Kendall correlation of the rank returned by these models for the three pairwise
settings: level 2 vs level 3, level 2 vs level 4, and level 3 vs level 4.
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Algorithms
Kernel Signature Isolation Tree

input A subsample {xi1 , . . . ,xim}, a dictionary D, a prob-
ability measure ν, the truncated level of the signature k,
the number of splitting windows ω

(a) The root node indexed by (0, 0) is associated with
the whole input space C0,0 = Fd.
(b) If the node (p, q) is terminal, stop the construction,
otherwise go to (c).

(c) A non-terminal node (p, q) is split as follows:

1. Choose a split variable d according to the probabil-
ity distribution ν on D.

2. Choose randomly and uniformly a split value γ in
the interval

[
min

x∈Xp,q

⟨Sk(x), Sk(d)⟩, max
x∈Xp,q

⟨Sk(x), Sk(d)⟩
]
,

where Sk(d) is the signature of d.

3. Form the children subsets

Cp+1,2q = Cp,q ∩ CL
K-SIF

Cp+1,2q+1 = Cp,q ∩ CR
K-SIF,

as well as the children training datasets

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1.

(d) Apply the building procedure starting from (b) to
nodes (p+ 1, 2q) and (p+ 1, 2q + 1)

output (C0,0, C1,1, . . . , )

Signature Isolation Tree

input A subsample {x1, . . . ,xm}, k depth of the signa-
ture, the truncated level of the signature k, the number
of splitting windows ω

(a) The root node indexed by (0, 0) is associated with
the whole input space C0,0 = Fd.
(b) If the node (p, q) is terminal, stop the construction,
otherwise go to (c).

(c) A non-terminal node (p, q) is split as follows:

1. Choose randomly and uniformly a coordinate
(i1, . . . , iℓ) in the set

{(i1, . . . , iℓ) ∈ J1, dKℓ; 1 ≤ ℓ ≤ k}.

2. Choose randomly and uniformly a split value γ in
the interval[

min
x∈Xp,q

S(i1,...,iℓ)(x), max
x∈Xp,q

S(i1,...,iℓ)(x)

]
.

3. Form the children subsets

Cp+1,2q = Cp,q ∩ CL
SIF

Cp+1,2q+1 = Cp,q ∩ CR
SIF,

as well as the children training datasets

Xp+1,2q = Xp,q ∩ Cp+1,2q

Xp+1,2q+1 = Xp,q ∩ Cp+1,2q+1.

(d) Apply the building procedure starting from (b) to
nodes (p+ 1, 2q) and (p+ 1, 2q + 1)

output (C0,0, C1,1, . . . , )

We repeated this experiment 100 times and report the correlation boxplots in Figure 5 for the Brownian motion
and in Figure 6 for the Merton-jump diffusion process. Note that the left and right plots refer to the different
split window parameters selected for K-SIF, corresponding to ω = 3 for the left panels, while, for the right
ones, we chose ω = 5. These boxplots show the Kendall tau correlation between the score returned by one of
the algorithms used with one specific depth and the same algorithm with a different depth. K-SIF results with
the three dictionaries are represented in blue, orange, and green for the Brownian, Cosine and green Gaussian
wavelets, respectively. SIF boxplots are instead in purple. The y-axis refers to the Kendall correlation values and
the x-axis to the settings of the depth values with respect to which the correlation has been.

A high correlation indicates an equivalent rank returned by the algorithm with different depth parameters.
Therefore, if the correlation is high, this suggests that this parameter does not affect the results of the considered
algorithm, and a lower depth should be selected for better computation efficiency. High correlations are shown
for both SIF (purple boxplots) and K-SIF for the two dictionaries, i.e. Brownian and Cosine (blue and orange
boxplots). Therefore, choosing the minimum truncation level is recommended to improve computational efficiency.
For the same algorithms, slightly lower correlations are identified in the case of the Merton processes, yet still
around 0.8 levels, hence supporting an equivalent claim. In the case of K-SIF with the Gaussian dictionary (green
boxplots), a much higher variation is obtained regarding correlation results across the three tested scenarios.
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Furthermore, in the case of the Merton-jump diffusion processes, the results show a lower correlation, consistent
with the other results. Therefore, in the case of K-SIF with such a dictionary, the depth should be carefully
chosen since different parameters might lead to better detection of the moments of the underlying process.
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Figure 5: Brownian Motion Process Results. Kendall tau correlation between the score returned by SIF
(purple) and K-SIF with different depth values, ω = 3 (left) and ω = 5 (right) , for the three dictionaries:
‘Brownian’ (blue), ‘Cosine’ (orange) and ‘Gaussian wavelets’ (green) on three dimensional Brownian paths.
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Figure 6: Merton-Jump Diffusion Process Results. Kendall tau correlation between the score returned by
SIF (purple) and K-SIF with different depth values for the three dictionaries: ‘Brownian’ (blue), ‘Cosine’ (orange)
and ‘Gaussian wavelets’ (green) with ω = 3 (left) and ω = 5 (right) on Merton-jump diffusion processes.

3.2 Robustness to Noise

We now explore the sensitivity of our class of algorithms to noisy data. We also provide a comparison with
Functional Isolation Forest. To that end, we simulate a dataset of 500 ‘relatively smooth’ standard Brownian
motion paths with µ = 0 and σ = 0.05. We also simulate 50 standard Brownian motion paths with µ = 0 and
σ ∈ [0.05, 0.2]. Depending on the level of noise present in the last 50 curves (i.e., standard deviation here), these
paths may represent normal, noisy and abnormal data. For example, 0.05 (corresponding to 0 noise level) is
normal data, while 0.2 (corresponding to 0.15 noise level) is abnormal.

We perform K-SIF and FIF with both ‘Brownian’ and ‘Cosine’ dictionaries and report the AUC under the ROC
curves by considering the 50 curves as the second class in Figure 7.

An AUC of 1 means that the 50 curves of the second class are identified as anomalies, while an AUC of 0.5
indicates that the algorithm cannot distinguish them from normal data. According to the findings provided in
Section 4.1, the parameters for K-SIF have been chosen such that the number of split window sizes is equal to 10
while the depth of the signature k = 2. We can observe that FIF, regardless of the dictionary used, is highly
sensitive to noisy data and considers it abnormal, even with a minimal noise level. In contrast, K-SIF is way
more robust to such data and requires higher noise levels to start viewing this data as anomalies.

Further, we provide additional experiments on the robustness to noise advantage of (K)-SIF over FIF. The
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Figure 7: Robustness of K-SIF and FIF to noise level.

configuration for data simulation goes as follows. We define a synthetic dataset of 100 smooth functions given by

x(t) = 30tq(1− t)q,

with t ∈ [0, 1] and q equispaced in [1, 1.4]. Then, we simulate the occurrences of events by adding Gaussian noise
on different portions of the functions. We randomly select 10% of them and define abnormal new curves by
adding Gaussian values on a sub-interval, i.e.,

x(t) = 30tq(1− t)q + ε(t)I(t ∈ [0.2, 0.5]),

where ε(t) ∼ N (0, 0.5). We select randomly 10% again and create slightly noisy curves by adding small noise on
another sub-interval compared to the first one, i.e.,

x(t) = 30tq(1− t)q + ε(t)I(t ∈ [0.7, 0.9]),

where ε(t) ∼ N (0, 0.1).

Figure 8 provides a summary visualization of the generated dataset in the first panel. The 10 anomalous curves
are plotted in red, while the 10 considered slightly noisy normal data are plotted in blue. The rest of the curves,
considered normal data, is provided in gray. The idea is to understand how the dictionary choice influences K-SIF
and FIF in detection of slightly noisy normal data versus abnormal noise. Results for K-SIF and FIF are provided
in the second, third and fourth panels of Figure 8, respectively.

We compute K-SIF with a Brownian dictionary, k = 2 and ω = 10 and FIF for α = 0 and α = 1 also with a
Brownian dictionary. The colors of the panels represent the anomaly score assigned to each curve for that specific
algorithm. In the second (K-SIF) and last (FIF with α = 0) panels, the anomaly score increases from yellow to
dark blue, i.e. a dark curve is abnormal and yellow is normal, while, in the third plot (FIF with α = 1) it is the
opposite, i.e. a dark curve is normal and yellow is abnormal.

It is possible to observe how K-SIF successfully can identify noisy and abnormal data as such. Indeed, while the
abnormal data are colored in dark blue, the noisy ones display a yellow color score. Instead, in FIF with α = 1
(third panel) both the abnormal and the slightly noisy curves are identified as normal data (given the reversed
scale and having dark blue colors). When it comes to FIF with α = 0 (last and fourth panel), both abnormal and
noisy data are scored as abnormal curves. Hence, FIF with both settings of the α parameter, cannot provide a
different score to noise and slightly noisy data. K-SIF, instead, successfully perform such a task.

3.3 Swapping Events Dataset

This part provides a visualization of the dataset used in the ‘swapping events’ experiment in section 4.2 of the core
paper. Figure 9 shows the simulated data. Remark that we define a synthetic dataset of 100 smooth functions
given by

x(t) = 30tq(1− t)q,

with t ∈ [0, 1] and q equispaced in [1, 1.4]. Then, we simulate the occurrences of events by adding Gaussian noise
on different portions of the functions. We randomly select 90% of them and add Gaussian values on a sub-interval,
i.e.,

x(t) = 30tq(1− t)q + ε(t)I(t ∈ [0.2, 0.4]),
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Figure 8: Robustness to Noise. The first panel presents the raw data, where there are 120 curves, of which,
in red we have the 10 curves for abnormal, or noisy data, in blue the 10 curves of slightly noisy but normal
data and in gray the remaining curves. The configuration for the data simulation is provided at the beginning
of this section. The second, third and fourth panels show the anomaly scores assigned to the curves based on
the algorithm of interest. The second panel refer to K-SIF, run with a Brownian dictionary, k = 2 and ω = 10.
The third and fourth panels refer to FIF run with a Brownian dictionary with α = 1 (third) and α = 0 (fourth),
respectively. The anomaly score color increases from yellow to dark blue in the second and fourth plots, i.e. a
dark curve is abnormal and yellow is normal. In the third plot, for vizualisation purposes, it decreases, i.e. a dark
curve is normal and yellow is abnormal.

where ε(t) ∼ N (0, 0.8). We consider the 10% remaining as abnormal by adding the same ‘events’ on another
sub-interval compared to the first one, i.e.,

x(t) = 30tq(1− t)q + ε(t)I(t ∈ [0.6, 0.8]),

where ε(t) ∼ N (0, 0.8). We then have constructed two identical events occurring at different parts of the functions,
leading to isolating anomalies.
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Figure 9: Swapping Events. Dataset used in the experiment of Section 4.2. Purple curves represent normal
data while yellow curves represent abnormal data. Configuration of the simulation are provided at the beginning
of the section.
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3.4 Computational Time of K-SIF, SIF and FIF

This section investigates the computational time of K-SIF, SIF and FIF. In this experiment we simulate multidi-
mensional Brownian motions with the dimension varying in {1, 5, 10}, the number of curves in {10, 100, 1000}
and the number of observation of each stochastic path in {10, 100, 1000}. The computation configuration of the
three algorithms is given as follows. We compute (1) K-SIF with a Brownian motion as kernel, ω = 10 and a
truncation level k varying in {2, 3, 4}, (2) FIF (with α = 1) and (3) SIF (with ω = 10, k = 3). All methods are
computed with the same tree parameters being the number of trees N = 100, the subsample size m = min(256, n)
and the height limit set to ⌈log2(m)⌉. The experiment is repeated 10 times, and the average computation time
is reported in Figure 10 w.r.t. the three parameters, n,m, d of the data. We can see that K-SIF, SIF and FIF
evolve comparably and that the scaling factors are equivalent.
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Figure 10: Computational time for K-SIF and FIF with respect to the number of curves (left), the number of
discretization points (middle) and the number of dimension (right).

3.5 K-SIF and SIF: a Better Discrimination of Anomalies compared to FIF

In this part, we construct an additional toy experiment to show the discrimination power of (K-)SIF over FIF. We
simulate 100 planar Brownian motion paths with 90% of normal data with drift µ = [0, 0] and standard deviation
σ = [0.1, 0.1], and 10% of abnormal data with drift µ = [0, 0] and standard deviation σ = [0.4, 0.4].

Figure 11 presents one simulation of this dataset. Note that, the purple paths represent normal data, while, in
orange, the abnormal are instead represented. On this dataset, we compute FIF (with α = 1 and Brownian
dictionary), K-SIF (with k = 2, ω = 10 and Brownian dictionary) and SIF (with k = 2 and ω = 10). To display
the scores returned by the algorithsm, we provide Figure 12. Note that, the plots shows the scores for these 100
paths, after having sorted them. Hence, the x-axis provides the index of the ordered scores, while, the y-axis
represents the score values. As for the simulation, we plot in purple the scores of the normal data and in orange
the scores of the abnormal data. The three panels refer to FIF, K-SIF and SIF, respectively.

It is possible to observe that the scores of K-SIF and SIF well separate the abnormal and the normal data, with a
jump in the scores which is quite pronounced, i.e. the scores of the normal data are relatively distant from the
scores of the abnormal data. If one focuses on FIF instead, then the discrimination of such anomalies appears
to be more challenging; the first panel shows, in fact, a continuous in terms of the score returned by the AD
algorithm, which does not separate normal and abnormal data.

In summary, the proposed algorithms leveraging the signature kernel (K-SIF) and the signature coordinate (SIF)
exhibit more reliable results in this experimental setting, suggesting their efficacy in discerning anomalies within
the simulated dataset. Detecting the order in which events happen is a much more informative feature than
incorporating a functional aspect in the anomaly detection algorithm. This aspect must be further investigated
and explored, particularly in the application areas where sequential data, such as time series, are taken into
account.

3.6 Anomaly Detection Benchmark Data

This subsection presents Table 3, where further information about the size of datasets related to the benchmark
in Section 4.3 is provided. We consider ten datasets. The columns offer p, corresponding to the number of
discretization points, the na/n ratios, where na correspond to the number of anomalies and n the number of
samples and, lastly, the labels denoting normal and abnormal data. In addition, the FPR at 95% FPR is given in
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Figure 11: Dataset used for the experiment. Purple paths are normal data while orange paths are the abnormal
ones.
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Figure 12: Scores returned by FIF (left), K-SIF (middle) and SIF (right) on planar Brownian motion with
abnormal data (orange).

Table 5 and the AUPR is given in Table 4. Tables 7, 8 and 9 depict additional deep learning based methods on
the same benchmark.

p training/testing : na/ n normal lab anomaly lab

Chinatown 24 4 / 14 (29%) 2 1

Coffee 286 5 / 19 (26%) 1 0

ECGFiveDays 136 2 / 16 (12%) 1 2

ECG200 96 31 / 100 (31%) 1 -1

Handoutlines 2709 362 / 1000 (36 %) 1 0

SonyRobotAI1 70 6 / 20 (30 %) 2 1

SonyRobotAI2 65 4 / 20 (20 %) 2 1

StarLightCurves 1024 100 / 673 (15 %) 3 1 and 2

TwoLeadECG 82 2 / 14 (14 %) 1 2

ECG5000 140 31 / 323 (10 %) 1 3,4 and 5

Table 3: Datasets considered in performance comparison: n is the number of instances, na is the number of
anomalies. p is the number of discretization points.
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SIF KSIFGW FIFGW KSIFC FIFC KSIFB FIFB IF OCSVM fHD fSDO

Chinatown 0 0.21 0.93 0.07 0.86 0 0.93 0.93 1. 1. 0

Coffee 1. 0.21 0.95 0.95 0.37 1. 1. 1. 1. 0.95 0.89

ECGFiveDays 0.125 0.31 0.44 0.19 0.06 0.31 0.125 1 0.125 0.84 0.06

ECG200 0.59 0.55 0.64 0.43 0.40 0.55 0.65 0.68 0.63 0.71 0.28

Handoutlines 0.44 0.62 0.61 0.68 0.65 0.71 0.80 0.49 0.56 0.60 0.60

SonyRobotAI1 0.05 0.96 0.15 0.30 0.35 0.35 1. 0.25 0.25 0.80 0.40

SonyRobotAI2 0.25 0.90 0.85 0.45 1. 0.25 1. 0.9 1. 0.1. 0.95

StarLightCurves 0.70 1. 1. 1. 1. 1. 0.92 1 1 1 0.8

TwoLeadECG 0.43 0.43 1. 0.43 1. 0.43 0 1. 1. 1. 0

ECG5000 0.35 0.39 0.7 0.08 1. 0.85 1. 0.49 0.28 0.12 0.42

Table 4: FPR at 95% TPR of different anomaly detection methods calculated on the test set. Bold numbers
correspond to the best result (lower is better).

SIF KSIFGW FIFGW KSIFC FIFC KSIFB FIFB IF OCSVM fHD fSDO

Chinatown 1 0.99 0.92 0.99 0.98 1 0.93 0.92 0.87 0.89 1

Coffee 0.90 0.99 0.94 0.98 0.99 0.95 0.86 0.89 0.89 0.97 0.99

ECGFiveDays 0.99 0.98 0.96 0.98 0.99 0.99 0.98 0.90 0.97 0.89 0.99

ECG200 0.94 0.87 0.89 0.91 0.93 0.90 0.91 0.92 0.93 0.90 0.94

Handoutlines 0.93 0.90 0.91 0.87 0.88 0.89 0.84 0.92 0.91 0.87 0.91

SonyRobotAI1 0.99 0.99 0.99 0.98 0.97 0.98 0.84 0.99 0.99 0.88 0.99

SonyRobotAI2 0.99 0.97 0.98 0.99 0.91 0.99 0.95 0.96 0.93 0.94 0.93

StarLightCurves 0.91 0.85 0.83 0.80 0.77 0.89 0.86 0.84 0.87 0.89 0.90

TwoLeadECG 0.99 0.99 0.86 0.99 0.85 0.99 1 0.88 0.74 0.82 1

ECG5000 0.97 0.98 0.96 0.99 0.94 0.97 0.93 0.99 0.99 0.99 0.98

Table 5: AUPR of different anomaly detection methods calculated on the test set. Bold numbers correspond to
the best result (higher is better).

SIF KSIF FIF IF OCSVM fHD fSDO DeepSVDD AnoGan AutoEncoder VAE

Chinatown 0.3 0.5 1.3 0.3 0.3 0.1 0.1 18 78 91 78

Coffee 0.8 1 1.6 0.3 0.3 0.1 0.1 16 88 91 90

ECGFiveDays 0.6 0.6 1.2 0.5 0.6 0.3 0.3 21 84 87 89

ECG200 3 5 9 1 1 0.7 0.7 18 151 91 90

Handoutlines 30 50 90 7 7 2 2 27 681 593 365

SonyRobotAI1 0.8 0.8 1.6 0.5 0.6 0.3 0.3 18 84 95 84

SonyRobotAI2 0.9 0.8 1.6 0.5 0.6 0.3 0.3 19 86 92 82

StarLightCurves 13 20 62 3 5 1 1 22 500 202 175

TwoLeadECG 0.6 0.6 1 0.3 0.3 0.2 0.2 9 75 66 58

ECG5000 5.4 4 15 1 1 0.6 0.6 9 270 102 91

Table 6: Computational time in seconds of different anomaly detection methods calculated on the test set.
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DeepSVDD AnoGan AutoEncoder VAE

Chinatown 0.5 0.72 1 0.99

Coffee 0.55 0.5 0.83 0.83

ECGFiveDays 0.67 0.79 0.96 0.96

ECG200 0.5 0.72 0.87 0.86

Handoutlines 0.63 0.55 0.82 0.82

SonyRobotAI1 0.52 0.91 0.95 0.95

SonyRobotAI2 0.64 0.87 0.88 0.88

StarLightCurves 0.60 0.30 0.76 0.77

TwoLeadECG 0.46 0.68 1 1

ECG5000 0.59 0.65 0.92 0.92

Table 7: AUROC of different deep learning based anomaly detection method calculated on the test set (higher is
better).

DeepSVDD AnoGan AutoEncoder VAE

Chinatown 0.76 0.89 1 0.99

Coffee 0.80 0.77 0.94 0.94

ECGFiveDays 0.93 0.96 0.995 0.995

ECG200 0.70 0.81 0.94 0.94

Handoutlines 0.73 0.63 0.86 0.86

SonyRobotAI1 0.75 0.96 0.98 0.98

SonyRobotAI2 0.88 0.96 0.97 0.97

StarLightCurves 0.89 0.74 0.90 0.91

TwoLeadECG 0.87 0.92 1 1

ECG5000 0.93 0.91 0.99 0.99

Table 8: AUPR of different deep learning based anomaly detection method calculated on the test set (higher is
better).

DeepSVDD AnoGan AutoEncoder VAE

Chinatown 0.90 0.68 0 0.05

Coffee 0.84 0.84 0.8 0.8

ECGFiveDays 0.70 0.65 0.5 0.5

ECG200 0.91 0.77 0.64 0.67

Handoutlines 0.78 0.78 0.52 0.52

SonyRobotAI1 0.88 0.47 0.33 0.33

SonyRobotAI2 0.95 0.83 1 1

StarLightCurves 0.79 0.82 0.46 0.46

TwoLeadECG 0.90 0.75 0 0

ECG5000 0.85 0.63 0.68 0.68

Table 9: FPR at 95% TPR of different deep learning based anomaly detection method calculated on the test set
(lower is better).
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