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Objectives and Problem Statements

Application Objectives
■ Determine presence or absence of Parkinson’s disease (PD) through

voice recordings.

■ For the sick patients, develop a surveillance tool by establishing their
PD stage and the disease progression from voice recordings.

The achievement of the above objectives will require the development of the
followings methodological objectives.

Methodological Objectives
■ Setting up an inference procedure with these attributes:

→ Statistical test that can be evaluated pointwise and known in
closed form.

→ Asymptotic distribution of the test statistics known in closed form.
→ Computationally efficient procedure.

■ Developing a statistical framework for the speech signal that would be
amenable to the above inference procedure.
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Objectives and Problem Statements
Statistical Framework for Deterministic EMD
Employ the decomposition method known as Empirical Mode
Decomposition (EMD) [HSL+98] that has the following properties: (1)
non-linear, (2) non-stationary, (3) data-driven, (4) not-constructive.

Problem Statement 1 (PS1)
Identify a basis representation that captures the following characteristics for
the deterministic, pathwise decomposition:

■ Smooth

■ Differentiable

■ Continuous

■ approximated by the class of polynomial basis in the L2 space, using
spline functions.

■ Admits closed form of the Hilbert transform

■ finite (but unknown) number of basis

A smooth spline formulation for the basis functions representations will
provide the solution to PS1.
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Objectives and Problem Statements

Statistical Framework for Stochastic EMD
Up until this work, the EMD has only been explored from an algorithmic deterministic,
pathwise point of view. The second problem statement aims to introduce a stochastic
version of this method, whose additional characteristics are presented below.

Problem Statement 2 (PS2)
Formulate a stochastic embedding of the basis representation obtained from
EMD that is consistent at process level and observed basis levels according
to the following properties

■ closed on the convolution

■ infinite divisibility

■ closed form of finite dimensional distributions

■ knowledge of sufficient statistics functions in the form of the mean and
the covariance of the considered stochastic process

The solution to PS2 will be provided by embedding the EMD into a
Gaussian Process framework.
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Objectives and Problem Statements

Adaptive Gaussian Kernel Design through
Optimal Time-Frequency EMD Partitions
Standard Gaussian process kernels often impose restrictions (as isotropy or
stationarity) that will not suit the developed settings. The employed kernels need to be
adaptive with time-varying hyperparameters or a more flexible kernel structure.
There are multiple solution to achieve such a result. In this work, the time-series kernel
known as the Fisher Kernel is employed to provide adaptivity.
However, this kernel should be applied on partitions of time where local stationarity
holds again. The following problem statement deals with how to construct a sound
local partition.

Problem Statement 3 (PS3)
Identify an optimal time-frequency partition for a formulation of novel
stochastic embedding. This is achieved through the following steps:

■ Partition Rule Definition

■ Formulation of the Optimisation Problem

The solution to PS3 will be provided by the Cross-Entropy Method.
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Objectives and Problem Statements

PS1 PS2

Natural Cubic Spline Formulation
A Multi-Kernel Representation of the EMD
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Deterministic EMD

Problem Statement 1 (PS1)
Consider the stochastic process S(t) ∈ R with t ∈ {−∞,+∞}, whose observed
realisation is denoted as s(t) and it is partially or discretely observed at
0 = t1 < · · · < tN = T .
S(t) carries any of the following attributes: non-stationary (weak or strong sense),
non-linear (in mean or covariance), potentially with discontinuities, potentially not
Markov.
Goal: Given an observed trajectory s(t) of S(t) and its finite, deterministic, pathwise
EMD decomposition given as

s(t) =
L+1∑
l=1

γl (t) (3.1)

identify a statistical model representation of s(t) γl (t) which satisfies the following
properties:

■ Smooth

■ Differentiable

■ Continuous

■ approximated by polynomial basis in L2

using splines functions.

■ Admits closed form of the Hilbert
transform

■ finite (but unknown) number of bases
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Deterministic EMD

(1) Solution to PS1
A natural cubic spline provides a solution to PS1. The following
steps are required and reviewed within this section.

■ The discrete signal s(t) is approximated by a natural cubic spline
denoted as s̃(t), which is optimal since it is the smoothest
function amongst all the continuously differentiable functions (up
to order 2) interpolating s(t) in [0,T ].

■ {γl(t)}L
l=1 will also be represented by a cubic spline since

recursively extracted on s̃(t).

■ The Hilbert transform of each γl(t) represented by a cubic spline
can be derived in closed form and provides the instantaneous
frequency in closed form. This is highly beneficial for the
proposal of the stochastic embeddings.
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Deterministic EMD

Stochastic process
A univariate real-valued stochastic process defined as
{. . .S(tk − h), . . . ,S(t1),S(t2), . . .S(tk + h), . . . } = S(t) for t ∈ {−∞,∞}, for
all k ∈ N, h ∈ R is a sequence of random variables indexed by time t.

Which methods are available to decompose and analyse
such stochastic processes?

Deterministic time Stochastic time

Deterministic
time-frequency

Stochastic
time-frequency

Fourier transform

h(f ) =
∫ +∞

−∞
s(t)e−j2πftdt

where h(f ) = F [s(t)] is such that h(f ) : R → C for any f ∈ R.
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Deterministic EMD
• infinite number of basis

• parametric structure

• a-priori basis

• stationary/linear data system

What happens if some of these assumptions do not hold?

Consider the deterministic path s(t) associated with the stochastic process
S(t), observed at 0 = t1 < · · · < tN = T . For the EMD to exist, s(t) must be
converted into a continuous analog signal denoted s̃(t).

The semi-parametric model known as a natural cubic spline will be used. As
a consequence, the EMD bases denoted as {γl(t)}L

l=1 will also be expressed
as natural cubic splines, derived from representation s̃(t) .

Natural Cubic Spline
Given a set of l knots a = τ1 < τ2 < · · · < τl = b, a function s̃ : [a, b] → R is
called a cubic polynomial spline if:

• s̃(·) is a polynomial of degree 3 on each interval (τj , τj+1)
(j = 1, . . . , l − 1)

• s̃(·) is twice continuously differentiable

It is then a natural cubic spline when s̃′′(a) = s̃′′(b) = 0.
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Deterministic EMD

The signal representation s̃(t) is expressed in the class of truncated power
basis, where the knot points are placed at the sampling times (τi = ti )

s̃(t) = a0 + a1t + a2t2 + a3 (t − τ1)
3
+ + · · ·+ a3+l−2 (t − τl−1)

3
+ . (3.2)

The coefficients are estimated by standard penalised least squares

N−1∑
i=1

(s(ti)− s̃(ti))2 + λ

∫ ti+1

ti

s̃′′(t)2dt (3.3)

with natural cubic spline constraints s̃′′(0) = s̃′′(tN) = 0 and where λ > 0. In
this case, the number of total convexity changes (oscillations) of the analog
signal s̃(t) within the time domain [0, tN ] is denoted by to L ∈ N.

Is there a finite basis decomposition admitting meaningful time
and frequency domain interpretation in such a framework?
Ans: YES [HSL+98]
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Deterministic EMD

Empirical Mode Decomposition
The Empirical Mode Decomposition of signal s̃(t) is represented by
the finite number of non-stationary basis functions known as Intrinsic
Mode Function (IMFs), denoted by {γl(t)}, such that

s̃(t) =
L∑

l=1

γl (t) + r (t) =

(
L+1∑
l=1

γl(t), γl+1(t) = r(t)

)
(3.4)

where r (t) represents the residual (or final tendency) extracted,
which has only a single convexity.

Define the interpolations of maxima and minima of s̃(t) as upper
envelope s̃U(t) and lower envelope s̃L(t) respectively and the mean
envelope as ml(t) =

(
s̃U (t)+s̃L(t)

2

)
.
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Deterministic EMD

The IMF basis {γl(t)}L
l=1 are designed to satisfy the following two conditions:

• Oscillation The number of extrema and zero-crossing must either
equal or differ at most by one:

abs
(∣∣∣∣{dγl(t)

dt
= 0 : t ∈ (t1, tN)

}∣∣∣∣− |{γl(t) = 0 :

t ∈ (t1, tN)}|) ∈ {0, 1}
(3.5)

• Local Symmetry The local mean value of the envelope defined by a
spline through the local maxima denoted s̃Ul (t) and the envelope
defined by a spline through the local minima denoted by s̃Ll (t) is equal
to zero pointwise i.e.

ml(t) =
(

s̃Ul (t) + s̃Ll (t)
2

)
I (t ∈ [t1, tN ]) = 0 (3.6)

20 / 74



Deterministic EMD

Note that, The minimum requirements of the upper and lower envelopes are:

s̃Ul (t) = γl(t), if
dγl(t)

dt
= 0 &

d2γl(t)
dt2 < 0,

s̃Ul (t) ≥ γl(t) ∀t ∈ (t1, tN)

s̃Ll (t) = γl(t), if
dγl(t)

dt
= 0 &

d2γk (t)
dt2 > 0,

s̃Ll (t) ≤ γl(t) ∀t ∈ (t1, tN).

(3.7)

The residual r(t) is designed to satisfy the following condition:

The residual is a curve with at most one extremum.

osc(r(t)) ∈ {0,1}
r ′(t) ≥ 0 or r ′(t) < 0 over [0,T ]
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Deterministic EMD

Instantaneous frequency

ωl(t) =
1

2π
dθl(t)

dt

An analytical signal is defined as zl(t) = γl(t) + j γ̌l(t) or
zl(t) = al(t)ejθl (t) where
• al(t) is the amplitude of zl(t)
• θl(t) = arctan γ̌l (t)

γl (t)
is the instantaneous phase.

Hilbert transform (Cauchy Principal Value Integral)

γ̌l(t) =
1
π

lim
ϵ→∞

∫ +ϵ

−ϵ

γl(τ)

t − τ
dτ
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Deterministic EMD

By considering the natural cubic spline representation for γl(t) per knot
segmentation as a local cubic polynomial for t ∈ [τi−1, τi ], then the Hilbert
transform is constructed as

γ̌l(t) = HT [γl(τ)] =
1
π

N−1∑
i=1

γ̌li (t) τi−1 < t ≤ τi (3.8)

where △i = τi − τi−1 and γ̌li (t) is the Hilbert transform of the i-th polynomial:

γ̌li (t) =
(

ali t
3 + bli t

2 + cli t + dli

)
log

(
t

t −△i

)
+ ali

(
△2

i t
2

−△i t2 − △3
i

3

)
+ bli

(
−△i t −

△2
i

2

)
− cli△i .

(3.9)

See for details [eMH20].

Hence, with the optimal representation of γl(t) provided by a
cubic spline, the instantaneous frequency can be computed in
closed form.
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Deterministic EMD

After the EMD and the HHT of the IMFs are computed, s̃(t) can be expressed
as:

s̃(t) = Re

{
L+1∑
l=1

al(t) exp{ȷ θl(t)}

}
= Re

{
L+1∑
l=1

al(t) exp{ȷ
∫ tN

t1

2πωl(t)dt}

}
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Deterministic EMD

1 Step 1 Find local extrema of s̃(t)

2 Step 2 Compute the upper envelope s̃U(t) and the lower
envelope s̃L(t) by employing spline interpolations (cubic, akima,
b-spline, etc.)

3 Step 3 Update the signal s̃(t)← s̃(t)− s̃U(t)+s̃L(t))
2

4 Step 4 Repeat 1, 2 and 3 until achieving an IMF γl(t)

5 Step 5 Subtract the obtained IMF from the signal
s̃(t)← s̃(t)− γl(t)

6 Step 6 Repeat 1-5 until achieving a tendency
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Deterministic EMD
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Stochastic Embedding EMD Models

Problem Statement 2 (PS2)
(PS2) Obtain a stochastic representation of S(t) that has the following
properties:

■ infinitely divisible at all time points

■ closed under convolution

■ closed forms of the marginal distributions

■ knowledge of the sufficient statistics functions given by the mean and
covariance functions.
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Stochastic Embedding EMD Models

(1) Solution to PS2
The class of Gaussian Processes carries the above properties and is selected for
the stochastic embedding of s̃(t) and {γl (t)}L+1

l=1 . The following steps are required
and reviewed within this section.

■ The goal is to formulate a stochastic representation that is consistent with the
basis function representations provided by PS1 .

■ This is established through the employment of the Gaussian process since there
is an isometric isomorphism between the reproducing kernel of the smooth
spline and the covariance function of the Gaussian process.

■ Equality of the distribution family between the stochastic process of s̃(t) and the
stochastic process of {γl (t)}L+1

l=1 will be considere, i.e. they will all be given as
GPs.

■ The RKHS of the stochastic processes denoted as HS̃ , HΓ2 , . . . , HΓL+1 are
ordered according to the smoothness expressed by their reproducing property
which is linked to the oscillations induced by the realised observed trajectories
s̃(t), {γl (t)}L+1

l=1 .
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Stochastic Embedding EMD Models

The EMD is applied to the approximating signal s̃(t), which can be given as

s(t) = s̃(t) + e(t) (4.1)

where e(t) represents the observed error at t ∈ [0,T ] and t is not a knot
point. Hence, the stochastic embedding will be formulated for S̃(t), for which
the following holds:

S(t) d
= S̃(t) + ϵ(t) (4.2)

The two processes are equal in the interval [0,T ] at the knot points of the
interpolated continuous signal s̃(t); however, at all the the other points, this
will not be the case and this will result into a residual error ϵ(t).

When the EMD is applied to s̃(t), each γl(t) can be considered as the
realised path of the stochastic process denoted as Γl(t) and the one for the
residual r(t) denoted as R(t). Hence, one will be given the following
stochastic processes

S̃(t), Γ1(t), . . . , ΓL(t),R(t)

The aim is to construct a model given the relationship in distribution of the
above sequence.

40 / 74



Stochastic Embedding EMD Models
The first step is to consider the following assumption:

S̃(t) d
=

L∑
l=1

Γl(t) + R(t) (4.3)

If S̃(t) was stationary then

S̃(t) ∼ GP
(
µ(t ;θµ); k(t , t ′;θk )

)
µ(t ;θµ) =

L∑
l=1

µ(t ;θµl ), k(t , t ′;θk ) =
L∑

l=1

kl(t , t ′;θl)
(4.4)

However, S̃(t) is assumed non-stationary and can be decomposed into the
sum of a finite number L non-stationary basis functions which are the IMFs.
This is equivalent to say that S̃(t) has a formulation given as

S̃(t) ∼ GP
(
µ(t ;θµ(t)); k(t , t ′;θk (t))

)
(4.5)

where µ(t ;θµ(t)), k(t , t ′;θk (t)) are both non-stationary.
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Stochastic Embedding EMD Models

Goal: is to model S̃(t) as the sum of multiple stochastic processes
whose structure can be derived with the EMD.

The next assumption required to define the desired stochastic
embedding is that each process Γl(t) will also be represented as a
Gaussian process such that

Γl(t) ∼ GP
(
µ(t ,θµl ); kl(t , t ′;θl)

)
, (4.6)

The assumption on the stochastic process of the residual is given as
follows:

R(t) ∼ GP
(
µ(t ;θµl+1); kl+1(t , t ′;θl+1)

)
(4.7)
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Stochastic Embedding EMD Models

A Multi-Kernel Representation of the EMD

S̃(t) ∼ GP
( L+1∑

l=1

µl(t ,θµl );
L+1∑
l=1

kl(t , t ′;θkl )

)
(4.8)

where the mean and the kernel functions are given as the sum
of the L mean and kernel functions of the stochastic processes
modelling the IMFs and the residual tendency. The models for
the stochastic process of the IMFs and the residual are

Γl(t) ∼ GP
(
µ(t ,θµl ); kl(t , t ′;θl)

)
for l = 1, . . . ,L

R(t) ∼ GP
(
µ(t ;θµl+1); kl+1(t , t ′;θl+1)

) (4.9)
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Stochastic Embedding EMD Models

Three system models are now proposed based on the above
formulation.

The first model assumes that the original observed signal s̃(t)
is obtained from a stochastic process S̃(t) which is a GP given
as follows:

System Model 1

S̃(t) ∼ GP
(
µ(t ;θµ); k(t , t ′;θk )

)
(4.10)

where µ(t ;θµ) and k(t , t ′;θk ) represent the mean and kernel
functions respectively, θµ and θk are the sets of
hyperparameters of the mean and the kernel respectively.

Note that the zero mean assumption is considered and,
therefore, one has µ(t ;θµ) = 0.
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Stochastic Embedding EMD Models

Consider s̃(t) decomposed into IMFs basis functions denoted as {γl(t)}L
l=1 .

The second model assumes that each γl(t) is observed from a Gaussian
Process Γl(t) and then reconstructs the original s̃(t) by summing up the IMFs.

γ1(t) Γ1(t) ∼ GP(µ1(t ;θµ1); k1(t , t ′;θ1))

s̃(t) . . .

γL(t) ΓL(t) ∼ GP(µL(t ;θµL); kL(t , t ′;θL))

System Model 2

S̃(t) d
=

L∑
l=1

Γl(t) ∼ GP
(
µ(t ;θµ), k(t , t ′;θk )

)
, (4.11)

where µ(t ;θµ) =
∑L

l=1 µl(t ;θµl ) and k(t , t ′;θk ) =
∑L

l=1 kl(t , t ′;θl).
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Stochastic Embedding EMD Models

Consider the extracted instantaneous frequencies {ωl}L
l=1. A

construction of System Model is given in the following diagram:

γ1(t) ω1(t) Γ
(BL)
1 (t)|Π = Π̂∼GP(µBL

1 (t ;θµBL
1
), kBL

1 (t , t ′;θkBL
1
))

s̃(t) . . . Π̂ . . . . . .

γL(t) ωL(t) Γ
(BL)
M (t)|Π = Π̂∼GP(µBL

M (t ;θµBL
M
), kBL

M (t , t ′;θkBL
M
))

System Model 3 can be constructed once the partition Π̂ is obtained.
The model is given by the IF being in a certain interval frequency
band. The partition Π̂ is estimated by a realisation of the stochastic
process S̃(t) and, therefore, is conditioned upon it. This is stated in
the distributional assumption of the different processes Γ

(BL)
m which

are indeed given as Γ
(BL)
m |Π = Π̂.
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Stochastic Embedding EMD Models

Formally, by considering {γl(t)}L
l=1, {ωl(t)}L

l=1 and the partition Π, the
following set of aggregated IMFs are obtained

System Model 3



γ
(BL)
1 (t) = γ1(t)1{ω1(t)∈

⋃D
d=1 Π1,d} + . . .+ γK (t)1{ωL(t)∈

⋃D
d=1 Π1,d}

γ
(BL)
2 (t) = γ1(t)1{ω1(t)∈

⋃D
d=1 Π2,d} + . . .+ γK (t)1{ωL(t)∈

⋃D
d=1 Π2,d}

...
γ
(BL)
M (t) = γ1(t)1{ω1(t)∈

⋃D
d=1 ΠM,d} + . . .+ γK (t)1{ωL(t)∈

⋃D
d=1 ΠM,d}

which results in construction of γ(BL)
m (t) for m = 1, . . . ,M such that

∀m γ
(BL)
m (t) =

L∑
l=1

γl(t)1{ωl (t)∈
⋃D

d=1 Πm,d} (4.12)
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Stochastic Embedding EMD Models

Each γ
(BL)
m (t) is embedded within a Gaussian Process, ΓBL

m .
Therefore, the original signal will then correspond to

System Model 3

s̃(t) =
M−1∑
m=1

γ
(BL)
m (t) =

L∑
l=1

γl(t) (4.13)

and the stochastic process S̃(t) is represented via multi-kernel
representation exploiting ΓBL

m (t), that is

S̃(t) d
=

M∑
m=1

ΓBL
m (t) ∼ GP (µs(t ;θµs), ks(t , t ′;θks)) , (4.14)

where µs(t ;θµs) =
∑M

m=1 µ
BL
m (t) and

ks(t , t ′;θks) =
∑M

m=1 kBL
m (t , t ′;θkBL

M
).
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The following figure compares the original IMFs extracted on a
given speech signal and the obtained IMFs Band Limited.
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SYSTEM MODEL 3 - CONSTRUCTION PROCEDURE
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The Optimal Time-Frequency EMD Partition

(1) Solution to PS3
PS3 aims to identify an optimal time-frequency partition to formulate a more
powerful stochastic embedding which relies on SM3 and models specific
frequency bandwidths. The achievement of such a partition rule Π∗ is
established through the following steps.

■ Procedure for partition rule definition.

■ Notion of optimality definition.

■ Formulation of the Optimisation Problem.

■ The Cross-Entropy Solution for the optimisation problem.

■ The discrete case using the Multinomial distribution.
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The Optimal Time-Frequency EMD Partition

1) Procedure for Partition Rule Definition:

• Consider the instantaneous frequencies denoted as ω1(t), ω2(t), . . . ,
ωL(t). These continuous functions are discretely evaluated on the mesh
0 = t0 < t1 < · · · < tN = T , the sampling points of the {γl(t)}L

l=1.
• Consider these as a set of NL points on the time-frequency plane given

as pl,n = (tn, ωl(tn)), for l = 1, . . . , L and n = 1, . . . ,N.
• Denote T = [t0, tN ] the time interval and I = [ω0, ωM ] the frequency

interval, where ω0 = minn,l ωl(tn) and ωM = maxn,l ωl(tn).
• Define the two-dimensional rectangle Π = I × T , which total area is

given as follows:

|Π| := |I| × |T | = (ωM − ω0)(tN − t0). (5.1)

Goal
Representing the area |Π| via an optimal partition Π∗ defined through a
discretised representation over a grid of M × D smaller rectangles.
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The Optimal Time-Frequency EMD Partition
Assumptions

• Ass.1 Partition the frequency domain into M subintervals
Im := [ωm−1, ωm] s. t.

I =
M⋃

m=1

Im, s.t.
M⋂

m=1

Im = ∅ and |I| =
M∑

m=1

|Im| for m = 1, . . . ,M. (5.2)

• Ass.2 Further divide the rectangle Im × [t0, tN ] into D smaller rectangles
with equal width, by partitioning T = [t0, tN ] into D intervals
Tm,d = [sm,d−1, sm,d ] s. t. t0 = s0 < sm,d−1 < sm,d ≤ sm,D = tN . This
yields to

T =
D⋃

d=1

Tm,d , s.t.
D⋂

d=1

Tm,d = ∅ and |T | =
D∑

d=1

|Tm,d | for d = 1, . . . ,D

(5.3)

• Remark 1: it is not necessary that |Tm,d | = |Tm′,d | for ∀ m ̸= m′.
• Remark 2: for a fixed m and d = 1, . . . ,D, Πm,d share the same subinterval of I

on the frequency axis, Im.
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Partition Rule Definition
Given the above procedure, the rectangle Π can now be partitioned
by defining MD rectangles Πm,d = Im × Tm,d for m = 1, . . . ,M and
d = 1, . . . ,D. The rectangles that are defined by this partition are
assumed to not overlap and as a result they satisfy

Π =
D⋃

m,d

Πm,d , s.t.
⋂
m,d

Πm,d = ∅ and |Π| =
∑
m,d

|Πm,d | (5.4)

Remark 3: the rectangles Πm,d and Πm′,d , when m ̸= m′,
m,m′ = 1, . . . ,M, that have the same index d do not share the same
subintervals on the time axis since Tm,d ̸= Tm′,d .
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Partition Rule Definition
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The Optimal Time-Frequency EMD Partition

The next step corresponds to define the following sets of points:

P =
⋃

Pm,d where Pm,d =
{

pl,n : pl,n ∈ Πm,d

}
(5.5)

The cardinality of the above set is denoted by |Pm,d |.

(1) Notion of Optimal Partition Π∗

■ The notion of optimality will reflect a concept of equi-energy partition in
the time-frequency plane.

■ The IFs samples produce a 2-d histogram. Therefore, to achieve an
equi-energy partition rule, the problem becomes equivalent to solving a
density optimisation problem producing an empirical ECDF as close as
possible to a uniform distribution in 2d (for a given number of partitions
in time and frequency).

■ This can be reposed in a discrete quantised framework as a
combinatorial search problem.
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The Optimal Time-Frequency EMD Partition

2) Formulation of the Optimisation Problem
To formulate an optimisation problem identifying the optimal Π∗, the
parameters of the given Π are identified through the following considerations.
Learning Π∗ will correspond to identify the optimal set of parameters.

Parametrisation of Π
• The optimal partition Π∗ is specified for the available sample set pl,n.
• Assume one partitions the given Π according to M − 1 frequency horizontal

partitions and D time vertical partitions.
• Remark 1: by construction, the horizontal frequency partitions are assumed

constant over time. The vertical time partitions might vary within each frequency
band.

• Therefore, the partition Π is parametrised according to a sequence of frequency
parameters ω1, . . . , ωM−1, defining subintervals of I, and D sequences of time
parameters sm,1, . . . , sm,D−1, defining subintervals of T for different m. The set
of parameters that are to be estimated is denoted by:

ψ =
[
ω1, . . . , ωM−1, s1,1, . . . , s1,D−1, . . . , sm,1, . . . , sm,D−1, . . . , sM,1, . . . , sM,D−1

]
.

(5.6)
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Goal

Learn an optimal partition Π∗ (hence the optimal set ψ∗ ) producing an
empirical distribution function of the IFs in each sub-rectangle Πm,d which is
as close to uniform distribution across the domain area Π as possible.

The solution this problem is provided by the Cross-Entropy
Method!

The Cross-Entropy method relies on Importance Sampling and requires the
definition of an Importance distribution.

Importance distribution Characterisation

• Consider a discrete random variable X that would be representative of the
boundaries defining the optimal partition Π∗, hence the tuples (m, d). This
random variable X is characterised by the Importance distribution.

• X is defined on the the indexes of the sub-rectangles Πm,d with corresponding
probabilities that sum to 1.

• As a result, the set of possible values taken by X consists of DM tuples (m, d),
for m = 1, . . . ,M and d = 1, . . . ,D. Therefore, X controls assignments of a
points to sub-rectangles Πm,d .
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Target and Empirical Distributions of X

Ideally, the target distribution of X will be uniform with p.d.f π(x)

Target : π(x) =
∏
m,d

π
1{x=(m,d)}
m,d for πm,d = P

(
X = (m, d)

)
=

|Πm,d |
|Π|

. (5.7)

Therefore, it associates the probability of drawing tuple (m, d) to the proportion of the
area of rectangle Πm,d to the overall area of Π. However, one has an empirical
distribution for X , depending on pl,n and denoted as π̂(x):

Empirical : π̂(x) =
∏
m,d

π̂
1{x=(m,d)}
m,d for π̂m,d = P̂

(
X = (m, d)

)
=

|Pm,d |
LN

, (5.8)

Therefore, the probability of drawing tuple (m, d) reflects the proportion of the number
of points pn,l that lay within the rectangle Πm,d to the overall sample size.

Remark that both πm,d and π̂m,d satisfy

∑
m,d

πm,d = 1 and
∑
m,d

π̂m,d = 1. (5.9)

60 / 74



The Optimal Time-Frequency EMD Partition

Goal
Select the support of X in such a way that the Kullback-Leibler divergence,
measuring similarity between the two proposed distributions, is minimised.

Remark: The Kullback-Leibler divergence defined as

KL(π, π̂) =
∫

x∈X
π(x) log

(
π(x)
π̂(x)

)
dx . (5.10)

Since X is a discrete random variable that ranges of values is countable and
takes values in the set of tuples X = {(m, d)}m,d , the integration problem in
5.10 can be rewritten as a sum over the elements of the set X , that is

KL(π, π̂;ψ) = logKN − log |Π|+ 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d |

(
log |Πm,d | − log |Pm,d |

)}
(5.11)

61 / 74



The Optimal Time-Frequency EMD Partition
The vector of parameters belong to the multidimensional parameters space
Ψ defined by the following constraints on its elements

Ψ =



ω1, . . . , ωM−1 ∈ (ω0, ωM) such that ω0 < ω1 < . . . < ωM−1 < ωM ,

s1,1, . . . , s1,N1−1 ∈ (t0, tN) such that t0 < s1,1 < . . . < s1,D−1 < tN ,
...
sm,1, . . . , sm,Nm−1 ∈ (t0, tN) such that t0 < sm,1 < . . . < sm,D−1 < tN ,
...
sM,1, . . . , sM,NM−1 ∈ (t0, tN) such that t0 < sM,1 < . . . < sM,D−1 < tN .

(5.12)

The Objective Function
The objective function of the constrained optimisation problem that finds
optimal partitioning of Π that minimizes distance between the empirical and
target distributions is specified by

ψ∗ = argmin
ψ∈Ψ

KL(π, π̂;ψ) = argmax
ψ∈Ψ

−KL(π, π̂;ψ) (5.13)
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3)The Cross-Entropy Method
The objective function is optimised with respect to the vector of parameters ψ
that belongs to the parameter space Ψ and is the domain of the objective
function.
The goal is to identify the optimal partition Π∗ treated as a parameter that
have to be learnt in the optimal Importance Distribution whose set of
parameters is denoted by ψ.
The optimisation problem is solved by considering the level sets of the
objective function {ψ : KL(ψ) ≥ γ} for γ ∈ R.

When γ = K̂L = argmaxψ∈Ψ KL(ψ), then {ψ : KL(ψ) ≥ γ} = {ψ⋆}.
Next, define a family of probability measure {Pφ′ : φ′ ∈ Φ} on Ψ with
densities {fφ′ : φ′ ∈ Φ} that are parametrised by φ′ ∈ Φ.
Let Eφ′ denote the expectation taken with respect to Pφ′ . Fix φ′ and γ and
define a rare event probability problem:

Pφ′ [KL(ψ) ≥ γ] = Eφ′
[
I{KL(ψ)≤γ}

]
=

∫
Ψ

I{KL(ψ)≤γ}fφ′(ψ)dψ (5.14)
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The Optimal Time-Frequency EMD Partition
Instead of approximating this probability naively by sampling from fφ′ , the importance
sampling method is used. Let gφ′′ denote the importance sampler, where φ′′ ∈ Φ.
Importance sampling approximates the rare event probability by

Pφ′ [KL(ψ) ≥ γ] =

∫
Ψ
I{KL(ψ)≤γ}fφ′ (ψ)dψ =

∫
Ψ
I{KL(ψ)≤γ}

fφ′ (ψ)

gφ′′ (ψ)
gφ′′ (ψ)dψ

= Eφ′′

[
I{KL(ψ)≤γ}

fφ′ (ψ)

gφ′′ (ψ)

]
≈

1
S

S∑
i=1

{
I{KL(ψi )≤γ}

fφ′ (ψi )

gφ′′ (ψi )

}

where vectors ψi for i = 1, . . . ,S are iid generated from gφ′′ (ψ). The optimal
importance sampler gφ′′ is selected through the cross-entropy criterion:

φ⋆ = argmax
φ′′∈Φ

∫
Ψ
I{KL(ψ)≤γ}fφ′ (ψ) log

fφ′ (ψ)

gφ′′ (ψ)
dψ

≈ argmax
φ′′∈Φ

1
S

S∑
i=1

I{KL(ψ)≤γ} log gφ′′ (ψi )

(5.15)

where vectors ψi for i = 1, . . . ,S are iid samples generated from fφ′(ψ). The CEM
starts from an initial sampling distribution gφ⋆0 and iteratively updates γ̂ and gφ′′ .
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The Optimal Time-Frequency EMD Partition
4)Utilising Kernel Density Estimator in Kullback-Leibler
Divergence of the Partitioning Problem
During the estimation process specifying the optimal partition Π, certain sub-rectangles
Πm,d do not contain any of the sample points pl,n = (tn, ωl (tn)) ∈ Π for Π = I × T for
n = 1, . . .N and l = 1, . . . , L.

Hence, the corresponding set Pm,d is empty, i.e. Pm,d = ∅. Consequently, the

probabilities πe
m,d (x) =

|Pm,d |
LN equal zero and their logarithms tend to infinity. To avoid

these numerical difficulties πe
m,d (x) is approximated by a kernel density estimator

π̂e
m,d (x ; k , h) parametrised by kernel k : Π× Π → R and bandwidth h > 0 such that

π̂e
m,d (x ; k , h) =

∫
Πm,d

π̂(p; k ; h)dp =

∫ ωm

ωm−1

∫ sm,d

sm,d−1

π̂(p; k ; h)dp,

where π̂(p; k ; h) : Π → [0, 1] is a kernel density estimator of points p = (t , ω(t)) ∈ Π
specified on a sample set pl,n

π̂(p; k ; h) =
1

Nh

N∏
n=1

K∏
k=1

k
(

p − pn,k

h

)
such that

∫
Π
π̂(p; k , h)dp = 1.
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The Optimal Time-Frequency EMD Partition
The objective function of the partitioning problem is reformulated to be the
Kullback-Leibler divergence between π(x) and

Empirical : π̂e(x ; k , h) =
∏
m,d

(
π̂e

m,d (x ; k , h)
)1{x=(m,d)}

, (5.16)

that is

KL(π, π̂e;ψ) = − log |Π|+
1
|Π|

M∑
m=1

d∑
d=1

|Πm,d |
(
log |Πm,d | − log π̂e(x = (m, d); k , h)

)
(5.17)

and with a numerical trick, for C > 0 being a very small number, i.e. C = 10−100

KL(π̂e, π;ψ) =

∫
x∈X

π(x) log
(

π(x)
π̂e (x ; k , h)

)
dx

= − log |Π| − logC +
1
|Π|

M∑
m=1

d∑
d=1

|Πm,d |
(
log |Πm,d | − log

π̂e(x = (m, d); k , h)
C

)
(5.18)
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5)Cross-Entropy Method Selection of Importance
Distribution: Discrete Case via Multinomial Distribution
The optimisation problem in 5.15 is solved through a discretisation of the intervals I
and T . In such a way, a CEM method with an IS distribution reflecting the distribution
of discrete random variables that determine the partitioning of the rectangle Π is taken
into account.

Regular Dense Grids
Consider regular dense grids of I and T constructed as follows:

1 Partition I into small Nω intervals of size ∆ω =
ωM−ω0

Nω
, and define

Igrid
nω = ω0 + [nω − 1, nω]∆ω for nω = 1, . . . ,Nω , therefore |Igrid

a | = ∆ω ;

2 Partition T into small Nτ intervals of size ∆τ =
tN−t0

Nτ
, and define

T grid
nτ = ω0 + [nτ − 1, nτ ]∆τ for nτ = 1, . . . ,Nτ , therefore, |T grid

τ | = ∆τ .

Probabilistic Model of I
Define a probabilistic model to partition I into M subintervals, Im for m = 1, . . . ,M.
Define (M)-dimensional multinomial random vector X whose entries Xm on the support
of {0, . . . ,Nω} indicates how many subsequent grids Igrid

nω are connected to construct
partitions Im and corresponding break points ωm−1, ωm ∈ I.
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Therefore, the multinomial random vector X models the number of grid points out of Nω
that belong to each of M intervals with probabilities of being in an interval being
0 ≤ p1, . . . , pM ≤ 1 for

∑M
m=1 pm = 1.

Distribution of X
The distribution function of X is formulated as

π(x;p) = π(x1, . . . , xM ; p1, . . . , pM) =
Nω!∏M

m=1 xm!

M∏
m=1

pxm
m . (5.19)

for p = [p1, . . . , pM ]. Recall that
∑M

m=1 Xm = Nω since X divides Nω points into M
subsets.

For instance, for realisations of X1, X2 such that x1 = 2 and x2 = 5, the partitions
I1 = [ω0, ω1] and I2 = [ω1, ω2] are given by

ω1 = ω0 +∆ωx1 and ω1 = ω1 +∆ωx2 = ω0 +∆ω(x1 + x2)
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This example gives an intuition for the general rule

ωm = ω0 +∆ω

m∑
m′=1

xm′ for m = 1, . . .M − 1.

and defines the approach to sample W1, . . . ,WM−1 via change of variables such that
Wm = ω0 +∆ω

∑m
m′=1 Xm′ for m = 1, . . .M − 1. The realisation of W1, . . . ,WM−1,

denoted by ω1, . . . , ωM−1, represent the break points defining partitions I1, . . . , IM .
Also, recall that ω0 and WM = ωM are fixed.

Probabilistic Model of T
Model M independent not identical partitions of the time-domain interval T into D
subintervals by following the same steps as before. Define M independent multinomial
random variables that are D-dimensional, each, denoted by X′

m for m = 1, . . . ,M,
whose entries X ′

m,d on the support of {0, . . . ,Nτ}, for d = 1, . . . ,D, specify how many

subsequent grids T grid
nτ are connected to construct partitions Tm,d of T and determine

break points sm,d−1, sm,d ∈ T .
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Denote their distributions by π(x′
m;p′

m) for p′
m = [p′

m,1, . . . , p
′
m,D ] such that∑D

d=1 p′
m,d = 1. For every m = 1, . . . ,M this construction satisfies

∑D
d=1 X ′

m,d = Nτ
and

sm,d = t0 +∆τ

d∑
d′=1

x ′
m,d′ for d = 1, . . . ,D − 1, m = 1, . . .M.

where x ′
m,d is a realisation of X ′

m,d .

Therefore, the random variables Sm,1, . . . ,Sm,D−1 for m = 1, . . . ,M are defined via
change of variables such that Sm,d = t0 +∆τ

∑d
d′=1 X ′

m,d′ for d = 1, . . .D − 1 with
realisations sm,1, . . . , sm,D−1 representing the break points of the partitions
Tm,1, . . . , Tm,D . Again, recall that t0 and Sm,D = tN are fixed for every m = 1, . . . ,M.

The Joint Distribution
Given this model, the joint distribution of Ψ = [W1, . . . ,WM−1,S1,1, . . . ,SM,D−1 can
we written as

g(ψ;φ) = C π(xm;p)
M∏

m=1

π(x′
m;p′

m), (5.20)
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log g(ψ;φ) = logC + log(Nω!) +
M∑

m=1

{log(xm!) + xm log(pm)}

+ M log(Nω!) +
M∑

m=1

D∑
d=1

{
log(x ′

m,d !) + x ′
m,d log(p′

m,d )
}
.

The objective function of the estimation problem with constraint imposed on
P = [p,p′

1, . . . ,p
′
M ] ∈ [0, 1] is then formulated as

Λ(P, λ) =
S∑

s=1

{
1{KL(π̂,π;ψ(s))≤γ}

(
logC + log(Nω!) +

M∑
m=1

{
log(x (s)

m !) + x (s)
m log(pm)

}

+ M log(Nω!) +
M∑

m=1

D∑
d=1

{
log(x

′(s)
m,d !) + x

′(s)
m,d log(p′

m,d )
}
.

)}

+ λ

1 −
M∑

m=1

pm

+
M∑

m=1

λm

1 −
D∑

d=1

p′
m,d

 . (5.21)
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Consequently



∂Λ(P,λ)
∂p1

=
∑S

s=1

{
1{

KL(π̂,π;ψ(s))≤γ
} x(s)1

p1

}
− λ = 0

.

.

.

∂Λ(P,λ)
∂pM

=
∑S

s=1

{
1{

KL(π̂,π;ψ(s))≤γ
} x(s)M

pM

}
− λ = 0

1 −
∑M

m=1 pm = 0

⇒



p∗1 = 1
λ

∑S
s=1

{
1{

KL(π̂,π;ψ(s))≤γ
}x(s)

1

}
.
.
.

p∗M = 1
λ

∑S
s=1

{
1{

KL(π̂,π;ψ(s))≤γ
}x(s)

M

}
∑M

m=1 pm = 1.

Since
∑M

m=1 pm = 1 and
∑M

m=1 x(s)
m = Nω

1

λ

S∑
s=1

{
1{

KL(π̂,π;ψ(s))≤γ
} M∑

m=1

x(s)
m

}
= 1 ⇒ λ = Nω

S∑
s=1

1{
KL(π̂,π;ψ(s))≤γ

}
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and finally

p̂m =

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x(s)
m

Nω

}
∑S

s=1 1{KL(π̂,π;ψ(s))≤γ}
(5.22)

Following the same steps, then

p̂′
m,d =

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x
′(s)
m,d
Nτ

}
∑S

s=1 1{KL(π̂,π;ψ(s))≤γ}
(5.23)
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