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ABSTRACT

In this Supplementary Material document, we present extra material required for the paper “Ataxic
Speech Disorders and Parkinson’s Disease Diagnostics via Stochastic Embedding of Empirical
Mode Decomposition”. The organization of the Supplementary Material is presented in the in-
troduction and then different sections are presented.

Keywords Empirical Mode Decomposition, Time-Frequency, Cross-Entropy, Gaussian Processes, Multi-Kernel
Learning, Speech Recognition, Parkinson’s Disease

1 Introduction

In this Supplementary Material document we provide further materials required for the understanding of the
main paper. Note that, apart from the code for the three system models implemented, at this Github page
https://github.com/mcampi111, it is possible to find a repository named “EMD-Stochastic-Embedding-for-PD-
Speech” in which further notebooks have been provided for some of the sections below presented.

The document is organised as follow: firstly, we provide evidence of why the Fisher kernel is required in the im-
plementation of this stochastic embedding. Traditional kernel matrices will not be able to fit the speech signals and,
therefore, an ad hoc kernel structure is highly needed. This is presented in the first section. Afterwards, further details
of the considered dataset are provided. Section IV presents the steps of the fitting procedure required to extract the
best models for the construction of the Fisher scores in the testing procedure. Section V presents the steps required to
implement the testing procedure and how to implement the Gram Matrices for the GLRT test.

2 Gram Matrices and Covariance Matrices

Figure 1 shows four different panels. The top panels present two randomly selected segments for the raw data of
two male voices with their associated empirical covariance matrices (the bottom plots). Remark that the empirical
covariance is computed as s̃(t)i,ᵀs̃(t)i for the i-th segment. Each segment is made of 5000 samples corresponding
to approximately 0.13 seconds given that the signals were recorded at 44.1 kHz. The top left panel is a segment of
a male, healthy patient, while the the top right panel represents a segment of a male, sick patient. Figure 2, instead,
represents two Gram Matrices obtained by using the radial basis function kernel which are evaluated on a uniform grid
of points of length 5000 samples (as the covariance matrices). The length scale hyperparameter was set to l = 0.1 for
the left panel and l = 2 for the right panel.

The plots for the empirical covariance matrices show that the underlying structures of the original data are not trivial
and that any classical stationary kernel as the radial basis function would fail in detecting it efficiently. As a result, the
authors decided to employ the data driven kernel known as the Fisher Kernel.
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Figure 1: Raw speech segments (top plots) for two male voices wit the associated empirical covariance matrices
(bottom plots). In the top panels, the x-axis corresponds to time. This is expressed in terms of number of samples, i.e.
5000 samples which is equivalent to 0.13 seconds for a recording frequency of 441. kHz. The y-axis is the amplitude
of the considered speech segments. The bottom panels show the empirical covariance matrices of the above segments.
If the segment is denoted as s̃(t)i, then the empirical covariance matrix is computed as s̃(t)i,ᵀs̃(t)i.
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Figure 2: Gram Matrices of the radial basis function kernel evaluated on a uniform grid of points of length 5000 with
two hyperparameters for the length scale. The left panel represent a Gram Matrix with l = 0.1. The right panel
represent a Gram Matrix with l = 2.

3 The King’s College Dataset

In this section, we provide further information about the King’s College Dataset employed for the experiments within
the main body of the paper. The Parkinson participants are labelled according to the following scores: the HYR score
with a range between 0 and 5 and then the UPDRS II-5 score and the UPDRS III-18 score.

The HYR score is known as the The Hoehn and Yahr Scale and was firstly published in 1967 (see [1]) and is used to
measure how Parkinson’s symptoms progress and the level of disability. Stage 0 corresponds to less severe labelled as
“ No signs of disease”, while stage 5 the most severe given as “Needing a wheelchair or bedridden unless assisted”. By
considering the UPDRS II-5 score, the Parkinson’s participants are classified in a range between 0 and 3 at maximum,
particularly for the female patients, 2 are at a 0 stage level and 2 are at a 1 stage level. In the case of the sick male
patients, 5 male patients are at a 0 stage level, 4 patients at 1 stage level, 2 patients at 2 stage level and 1 patient at a 3
stage level. The top barplots of Figure 3 represents a summary of the described database. The barplots are separated
by gender which is shown on the x-axis. Note that the left barplot provides information about the healthy patients
while the right one about sick patients. The bottom barplots represent the number of ill patients split according to their
UPDRS II-5 score (which goes from 0 to 3 in the dataset).

4 The Fitting Procedure for The Estimation Model Phase

In this section, the fitting procedure of the time series models is presented. Consider the female case, for example.
Denote the interpolated signals through a cubic spline for a female Parkinsons’s voice as s̃(t)1 and for a healthy female
voice as s̃(t)0, with t ∈ [t0, . . . , tN ]. Hence, the 0 index refers to a female voice not affected by Parkinson’s, while
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Figure 3: Barplots describing the participants of the considered case study. The upper panel is divided in two separate
barplots. The left show the number of healthy participants of the datataset (controls) and the right one shows the
number of sick patients. The x-axis is split within both barplots between gender and the y-axis shows the counts of
the patients. The lower panel shows four different plots describing the sick patients divided by UPDRS II-5 score.
The left barplot shows the sick patients split by gender with UPDRS II-5 score equal to 0. Then, from left to right,
equivalent barplots are presented with the UPDRS II-5 score increasing from 0 to 3, which is the maximum assigned
score for only one male patient. The x-axis is split between gender and the y-axis shows the count of the patients.

the 1 index refers to a female voice affected by it. An equivalent notation can be considered for a male patient. The
original voices are firstly split into segments of length 5000. Therefore, the notation for one segment will become
s̃(ti)0 and s̃(ti)1, where i = 1, . . . , Nf are the indices referring to the segment number for one of the two groups, i.e
healthy or Parkinson female patients, respectively, and ti corresponds to an input vector belonging to the following
mesh

T =
[
t1, t2, . . . , tNf

]
= [[t1, . . . , t5000] , [t5001, . . . , t10000] , . . . , [tN−4999, . . . , tN ]]

(1)

Note that the same number of segments were randomly selected for the two classes of healthy and sick patients.
Select now the segments for the healthy female voice denoted as s̃(ti)0, i = 1, . . . , Nf . The goal is to characterise
their local structure through a collection of scorings directly depending on the generative model inducing the data
generating process of such a speech type, i.e. healthy and female. To achieve this result, one further splits each
segment s̃(ti)0 into mini-batches of length 100 sample points (corresponding to 2.2 ms). Therefore, one will have
s̃(tji )0 with j = 1, . . . , 50 and i = 1, . . . , Nf . We further redefine the mesh for the input variable set T referring to a
segment s̃(ti)0 as

ti = [t1i , . . . , t
50
i ]

= [[t1, . . . , t100]
i, [t101, . . . , t200]

i, . . . , [t4901, . . . , t5000]
i]

(2)

for i = 1, . . . , Nf . Note that, for each mini-batch s̃(tji )0, a set of ARIMA models given in Table 1 will be fit without
an intercept. Instead, for each mini-batch s̃(tji )1, only an ARIMA(3,1,3) with intercept included will be fit. The
main reason to do so is that a mini-batch belonging to the sick patients hence s̃(tji )1 will have a much more complex
structure due to faster changes in the speech and, therefore, will require more parameters to be efficiently detected.
For a healthy mini-batch instead, all the models given in the table will be fit. Remark that a general ARIMA model
with parameters p for the autoregressive model order, q for the moving-average model order and d representing the
number of differencing required to make the time series stationary, is given as follows

α(B) (1−B)d s̃(tji )0 = β(B) w(tji )0 (3)

where B is a lag operator such that α(B) = 1 − α1B − · · · − αpBp, β(B) = 1 + β1B + · · · + βqB
q and w(tji )0 is

white noise. The fitting procedure aims to extract the Fisher score vector and hence deriving the Fisher kernel.

3
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ARIMA Model p q
M1 0 0
M2 1 0
M3 0 1
M4 1 1
M5 2 0
M6 2 1
M7 0 2
M8 1 2
M9 2 2
M10 3 0
M11 3 1
M11 3 2
M13 0 3
M14 1 3
M15 2 3

Table 1: Fitted ARIMA model for every sub-batch s̃(t)i,b0 with b = 1, . . . , 50. Note that the sub-indices i and j
corresponds to number of segments for the healthy and sick patients, respectively, regardless the gender. Hence, for
example, for the female case, i, j = 1, . . . , Nf . The parameter d is omitted since it was set equal to 1 for each of the
model.

One has 15× 50×Nf fitted models in total for the healthy mini-batches, and the intent is to identify the one that best
describes the considered populations of segments, hence the healthy female one. Note that an equivalent procedure
will be carried for the healthy male mini-batches. Instead, for the sick mini-batches, one will have 1× 50×Nf fitted
models. The same procedure is applied in the male case.

The fitting procedure for the healthy mini-batches is now introduced. Denote the winning model as Mh?,i,j
0 , where h?

is the h-th winning model across the 15 given in Table 1 for each segment s̃(tji )0. To identify it, consider the Akaike
information criterion (AIC). Define AIC for every fitted model on every mini-batch s̃(tji )0 as follows

AICi,j,h0 = 2κi,j,h0 − 2L̂i,j,h0 ∀i, ∀j (4)

where κi,j,h0 is the number of estimated parameters in the model and L̂i,j,h0 represents the log-likelihood for model h
computed for the mini-batch s̃(tji )0 over the input vector tji defined as

L̂i,j,h0 = L(s̃(tji )0, t
j
i ; θ̂0) =

100∑
j=1

log `tji
(s̃(tji )0, t

j
i ; θ̂0) (5)

Table 2 shows the AICs scores computed from the model fits obtained on all the mini-batches for the healthy female
population. The following step is to extract the best model on every mini-batch amongst the 15 fitted models. By
referring to Table 2, this means that one model per row will be selected.
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Mini-batch M1 M2 .... M15

s̃(t)1,10 AIC1,1,1
0 AIC1,1,2

0
... AIC1,1,15

0

s̃(t)1,20 AIC1,2,1
0 AIC1,2,2

0
... AIC1,2,15

0

... ... ... ... ...

s̃(t)1,500 AIC1,50,1
0 AIC1,50,1

0
... AIC1,50,15

0

s(t)2,10 AIC2,1,1
0 AIC2,1,2

0
... AIC2,1,15

0

... ... ... ... ...

s̃(t)2,500 AIC2,50,1
0 AIC2,50,2

0
... AIC2,50,15

0

... ... ... ... ...

s̃(t)
Nf ,1

0 AIC
Nf ,1,1

0 AIC
Nf ,1,1

0
... AIC

Nf ,1,15

0

... ... ... ... ...

s̃(t)
Nf ,50

0 AIC
Nf ,50,1

0
AICNm,50,2

0
... AICNm,50,15

0

Table 2: Table summarising all the scorings collected for the mini-batches of the female healthy population of patients,
i.e. s̃(t)0. Note that an equivalent procedure will be applied for the male case.

The best model Mh?
0 will be the one minimising the AIC and hence showing

AICh?,i,j
0 = min

h
AICi,j,h0 ∀ i, j (6)

where h = 1, . . . , 15. Afterwards, the set of winners models for each s̃(tji )0 is identified and given as{
Mh?,1,1

0 , . . . ,Mh?,1,50
0 ,Mh?,2,1

0 , . . . ,Mh?,2,50
0 , . . . ,M

h?,Nf ,1

0 , . . . ,M
h?,Nf ,50

0

}
(7)

The next step consists of selecting Nf winner models, hence one for every segment s̃(ti)0 amongst its mini-batches
s̃(tji )0 with j = 1, . . . , 50, and, therefore, the ones that provides

AICh?,i,j
0 = min

j
AICh?,i,j

0 ∀ i (8)

where i = 1, . . . , Nf . Hence, Nf winning models are selected fitted over the mini-batches s̃(tji )0 as{
Mh?,1

0 ,Mh?,2
0 , . . . ,M

h?,Nf

0

}
(9)

Note that, in the above notation, the index of the mini-batches j is dropped since the best model with respect to each
segment i is selected. However, the reader should remember that each selected model corresponds to the one fitted
over the mini-batches of length 100 samples. Hence, the best model for the segments i was selected amongst the
fitted models over the mini-batches j = 1, . . . , 50. In order to construct a weighted Fisher score for the population of
healthy female patients proposed in the texting procedure, compute the proportion ρi0 reflecting the number of times a
model Mh?,i

0 appeared within the set of winning models over the mini-batches as

ρ
i
0 =

∣∣∣∣{Mh?,1,1
0 ,M

h?,1,2
0 , . . . ,M

h?,1,50
0 ,M

h?,2,1
0 , . . . ,M

h?,Nf ,50

0 ,

}
= M

h?,i
0

∣∣∣∣
Nf

∀ i (10)

Note that 0 ≤ ρi0 ≤ 1 for i = 1, . . . , Nf and
∑Nf

i=1 ρ
i
0 = 1. Therefore, from this fitting model procedure, a set of

Nf winning models and their associated proportion computed as given above will be computed for the female healthy
subjects. Remark that the same practice will be applied for the case of the male healthy participants and a set of Nm
winning models will be extracted.

For the case of the sick female patients, the procedure goes exactly as the one presented so far. However, the reader
should bear in mind that, given the more complexity of the speech signals associated with the presence of Parkison’s
disease, then only time series ARIMA model fitted to the mini-batches given as s̃(tij)1 for j = 1, . . . , 50 and i =
1, . . . , Nf is a (3,1,3) ARIMA model with an intercept. Hence the first step of model selection over the mini-batches
will not be required. Furthermore, by following such a procedure, the models for sick and healthy populations will be
nested, and the reference model will be the one of the sick patients indeed. In such a way, the GLRT test will provide
reliable results given the requirements of nested models.

Note that, the presented procedures consider the observed approximated original signal, i.e. s̃(tij)0 and s̃(tij)1 with
varying indices i and j depending on the different families. The same procedures will be repeated on the IMFs, and the
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Figure 4: Figure showing a diagram for the steps required for the testing procedure of the model validation phase for
the healthy subjects (controls).

band-limited IMFs and Fisher score vectors will be equivalently derived. Figure 4 provides an overview of the fitting
procedure proposed for the healthy subjects. It starts with the healthy patient voices on the left, presents the procedure
to obtain the segments and then the mini-batches. Afterwards, 15 ARIMA models as given in Table 1 are fitted to each
mini-batch. The following step selects the winning model over each mini-batch, and then the model selection stage to
then construct the Fisher score vectors is used in the testing procedure. Indeed, the take out of the fitting procedure
will be the winning models for each population and their associated proportions.

The best model is chosen over the 50 mini-batches of a segment for every segment of the healthy population (i.e. male
or female). Then a collection of Fisher scores defined in the following section will be given. The same procedure
applies to the case of sick patients; however, at the stage of the fit, there will be only one model considered.

The next step foresees the description of the testing procedure for the validation model phase which will construct
the GLRT test implemented with Fisher vectors for detecting Parkinson’s disease. This is presented in the following
sections.

5 Testing Procedure for the Model Validation Phase

The testing procedure employed for the model validation phase of analysis is presented in this section. In applying the
validation analysis on the testing data, one uses the models obtained from the training phase and evaluate them to the
testing data to calculate the test statistic for the GLRT.

In order to perform this evaluation there is a procedure undertaken which is described in the remainder of this section.
The objective is to obtain a unique Fisher score computed by aggregating information coming from the set of Nf
models for the female case or Nm for the male case which are then subsequently used to conduct a GLRT test with
such a derived quantity. This will be done over the test mini-batches for each participant that were not used in the
training set of data. Consider the following steps described for the female case as an example, the male case is
analogous.

6

Electronic copy available at: https://ssrn.com/abstract=4173858



Consider a test segment denoted as s̃(ti)ts, where the input variable ti corresponds to a time index for the i-th segment
of the interpolated speech of length 5000 samples. This test segment is then further partitioned into what are termed
mini-batches. In this process, each s̃(ti)ts is subsequently split into mini-batches of length 100 sample points (corre-
sponding to 2.2ms) and so this produces for each segment a collection of mini-batches s̃(tji )

ts with j = 1, . . . , 50 and
i = 1, . . . , Nf,test.

Based on the training stage, it will have produced Nf fitted models obtained from the fitting procedure for both
poluation samples, i.e. sick and healthy. Each of these models is then evaluated on the constructed testing mini-
batches. Note that there is no re-fitting at this stage but just the evaluation of the testing data. Once that is obtained,
then the extraction of the Fisher score vectors is required. The procedure for the computation of the Fisher score vector
is given as follows.

Consider a test mini-batch denoted as s̃(tji )
ts. For simplicity of the notation and without loss of generality, the index

of the segment is dropped since the testing procedure will be conducted at a mini-batch level. Hence, define the set
of testing mini-batches as s̃(tj)ts. Note that, there will Nf,t = Nf,test × 50 mini-batches per participant in the female
case. Hence the index j will vary as j = 1, . . . , Nf,t = 4450. An equivalent reasoning applies in the male case where
one will have Nm,t = Nm,test × 50. The index for the extracted model from the fitting procedure will be denoted as
h0? = 1, . . . , Nf and h1? = 1, . . . , Nf , for the healthy and sick families, respectively. Once evaluated the log-likelihood
on the set of mini-batches of length 100 samples, then the Fisher scores for each model h0? and h1? will be computed
for every mini-batch j and will be given as follows:

U j

θ0 (100×κj,h0
?

0 )
= ∇θ0(L

j,h0
?

0 ) ∀ j, ∀h0?

U j

θ1 (100×κj,h1
?

1 )
= ∇θ0(L

j,h1
?

1 ) ∀ j, ∀h1?
(11)

Since the testing procedure will proceed equally on these two introduced Fisher scores, the following notation is
introduced

U j

θv (100×κj,hv
?

v )
= ∇θv(L

j,hv
?

v ) ∀ j, ∀hv? (12)

where the index v = 0, 1. Note that the index j is in the right-hand side of the above equation since the log-likelihood
considered refers to model hv? evaluated on the mini-batch j. Furthermore, the Fisher score is evaluated at each point
of the sample, i.e. the mini-batch j, where this score is a matrix (100× κi,j,h?

0 ), where 100 is the number of samples
of the mini-batch and κj,h

v
?

0 is the number of parameters of the model evaluated on that mini-batch given as

κ
j,hv

?
0 = p+ d+ 2 (13)

To construct the Gram matrices required for the GLRT test, firstly the Fisher score is centred as follows:

U j C

θv (100×κj,hv
?

v )
= Vᵀdiag

σ̂1,1 .. ..
.. σ̂1,1 ..
.. .. ..
.. .. σ̂κ,κ


−1

V ∀ j, ∀hv? (14)

where

V =

[
U j

θv (100×κj,hv
?

v )
(t)− µ̂Uj

θv
(t)

]
µ̂Uj

θv

=

100∑
t=1

U j

θv (100×κj,hv
?

0 )
(t, :) ∀ j, ∀hv?

[
σ̂Uj

θv

]
s
=

√(
U i

θ0 (100×κi,hv
?

v )
(t, :) − µ̂Uj

θ0

(t, :)

)2

100
∀ j, ∀hv?

(15)

Note that µ̂Uj
θv

represents the sample mean and
[
σ̂Uj

θv

]
s

represent sample standard deviation estimates of the Fisher

score, respectively and are computed over the 100 samples of the mini-batch j linked to its log-likelihood Lj,h
v
?

v , for
every MLE estimate. For simplicity, in the notation of the sample mean and sample standard deviation estimates, the
dimensionality of the Fisher score is dropped. To avoid ambiguity, within the standard deviation formulation, taken
over the columns of the Fisher score, i.e. on the 100 samples for each MLE estimate, and highlight that this calculus is

7
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done over the column and not over the entire matrix, t(:) has been introduced. The following step consists of summing
up the evaluated Fisher score over the 100 samples for each parameter and hence obtaining

U j, C

θv (1×κj,hv
?

v )
=

100∑
t=1

U j C

θv (100×κj,hv
?

v )
(t) ∀ j, ∀hv? (16)

The left-hand side of the above Fisher score is now of dimension (1× κj,h
v
?

b ) and does not depend on t anymore. This
is because the gradients previously evaluated for each parameter at the values t of the given mini-batch s̃(tij)

test are
now summed up together over the vector t and, therefore, a Fisher score vector evaluated at the MLE estimates is now
obtained. However, the important step in this construction is that these Fisher scores are centered across the dimension
t. Also, the centring indicator has been dropped on the left-hand side, but the reader should bear in mind that these
Fisher vectors have been centered for computational stability reasons. Remark now that each mode hv? corresponds to
a winning model extracted from the fitting procedure and that the models differ amongst them. They carry the same
order in the case of sick patients, i.e. always a (3,1,3) ARIMA model, but in the case of the healthy patients, these
models dfferet between them. Each Fisher score vector has, therefore, a different dimension. To construct a unique
Fisher score, the obtained Fisher score vectors are modified by padding zeros within the vector up to the number of
maximum possible parameters, being 3 + 3 + 2 = 8. However, the vector will be ordered in terms of the comprised
parameter and formally given

T = [δ, α1, α2, α3, β1, β2, β3] (17)
where, in order, δ is the intercept of the ARIMA fitted model, α1, α2, α3 are the AR parameters and β1, β2, β3 the MA
paramters. Define now a padding operator given as O given as

U
j,hv

?

θv (1×κ) = O

[
U j, C

θv (1×κj,hv
?

v )

]
∀ j, ∀hv? (18)

such that it will return a Fisher vector zero-padded for the elements of T inU i

θv (1×κj,hv
?

v )
that are not present. Hence,

this new Fisher vector and will always be of dimension (1 × κ) with κ = 8. Note that, for the healthy category, the
intercept position will always be zero by construction. Note that the index for the model hv? is now on the left-hand
side. Now, at this point, one will have one Fisher score vector of dimension (1 × κ) for every population v = 0, 1,
every mini-batch j = 1, . . . , Nf,t, every model hv?. To aggregate the information related to every model evaluated on
the testing data and hence capturing structural properties provided by the Fisher vector, for every mini-batch, all the
Fisher vectors from every model will be summed up together as

Ũ j
θv

=

Nf∑
hv
?=1

ρ
hv
?
v U

j,hv
?

θv (1×κ) ∀j (19)

where ρh
v
?
v is the proportion computed in Equation 10 since each Fisher score is weighted according to the proportion

of the winning times of that model. Note that in the fitting procedure explanation this was denoted as ρiv and i =
1, . . . , Nf corresponded to the number of models extracted on a mini-batch which provided the best fit and, therefore,
i and h? indicates the same quantity. Next, the Gram matrix for the mini-batch s̃(tji )v will be defined as

K̃j
v (κ×κ) = Ũ

j ᵀ
θv
Ũ j
θv

for j = 1, . . . , Nf,t (20)

To regularise the above matrix due to computational instability that could lead to issues encountered with the inversion
of such a matrix or the log-determinant, a covariance shrinkage estimator was considered. The covariance shrinkage
estimator of K̃j

v (κ×κ) is given by

K̃j S
v (κ×κ) = (1− γ) K̃j

v (κ×κ) + γ Q Iκ κ (21)

where γ is some shrinkage factor, Iκ is the identity matrix of dimension κ and the matrix Q is given as

Q =
tr
[
K̃j
v (κ×κ)

]
κ

(22)

Once this is derived, then the GLRT test can be computed for every testing mini-batch j for female case (as for the
male ones) as follows:

L̂ = −(Ũ j
θ0
)
(
K̃j S

0

)−1

(Ũ j
θ0
)ᵀ − log

(
det
[
K̃j S

0

])
+(Ũ j

θ1
)
(
K̃j S

1

)−1

(U j
θ1
)ᵀ + log

(
det
[
K̃j S

1

]) (23)
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In practice, the Generalised Likelihood Ratio Test is evaluated for Fisher score vectors derived from the winning
models of the testing set segments with the constructed Gram matrices obtained through the fitting procedure. Figure
6 in the main body of the paper provides a diagram summarising the steps required for the testing procedure. It
is applied to one testing mini-batch and then will be repeated on each of the remaining testing mini-batches. As
presented, each model for the two categories of participants will be evaluated on the given mini-batch. Afterwards,
according to the steps introduced above, the two Fisher score vectors will be derived by aggregating the individual
Fisher scores evaluated with the different model parameters and will provide Ũ j

0 and Ũ j
1 . At that point, the Gram

Matrices evaluated on that mini-batch can be computed, and the GLRT test will be then calculated. This process
will be repeated for each mini-batch and every patient. Results will be provided in the following section, where the
proportion of mini-batches failing to reject the null hypothesis, i.e. being sick, will be shown. The GLRT test will
be evaluated for system model one on the approximated signal, while, for the other two system models, the same
procedure will be conducted on the first three IMFs. Results are provided in the section below.
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