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In recent years, there is the growing trend in leveraging Artificial Intelligence (Al) and Machine Learning (ML)
to enhance the assessment and management of several decision making processes.

What is Machine Learning?

Machine Learning (ML) is the field focusing on the development of algorithms, able to achieve a certain task
(such as recognition, prediction, etc.). If one considers a regression framework then

?

([ )
Output/ target variable / Label Yy <——— X Input/ predictor variables/ features

The goal is to find a relationship between x and Y . To achieve that, one needs to define a function [
such that

y = f(x)

and it is data-driven, i.e. there is no assumption about the data generating function.
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Auditory Profiling
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Models for Understanding Audiological Tests Relationship
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Main Challenges

Auditory Profiling Models for Understanding Audiological Tests Relationship
* Data Heterogeneity e ComplexInteractions
* Data Integration Method. * Lack of Inference Settings

Common Challenge: focus on direct test results, offering only a momentary snapshot of hearing function, without

4

capturing the underlying progression or true auditory state.

4

We propose an auditory profiling solution relying on a state-space-model with the following properties:

It estimates the underlying hearing loss trend inferring the true auditory state over the frequency domain

It handles data heterogeneity
It models audiological tests Interactions by incorporating knowledge of the speech tests
It provides an inference and testing framework
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We formulate a state-space model over the frequency domain of the audiogram and across age groups.

Yr=a+PBkste€
fy}ll\ Baseline Model : 4 B re f="fi-fi1
oy Kf = 9 + ¢1Kf—1 + Cl)f
Yy

yf=a+ﬁlcf+nyQ+nyN+ €r

yap Extended Model :
P -7 Px1 Kr =0+ ¢1Kr_1 + wy f=rf-fu
age groups
Observations: Estimated Parameters:
Yr Audiogram frequency Kr Trend of hearing loss over frequency for all age groups
X Speech-in-quiet a Baseline hearing loss level across age

Xy Speech-in-noise B Quantifies the influence of kf on JYr
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Data: 48,144 adults, with symmetric hearing loss, age range between 40 to 90 (French Amplifon
Database) for which we have: Audiogram, Speech-in-quiet, Speech-in-noise.

We run the model over different population segments, i.e. overall, by degree of hearing loss.

PTA Categories

Degree of HL PTA Range (dB)
Normal -10to 15
Slight 16 to 25
Mild 26 to 40
Moderate 41 to 55
Moderately severe 56to0 70
Severe 71 to 90
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Baseline hearing loss across age Trend of hearing loss over frequency
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Heatmaps of Speech-in-quiet and speech-in-noise coefficient Estimates
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* We introduced a state-space model acting on frequency and age domains

 The parameters of the model acts as auditory profiles describing population dynamics across
these 2 domains

 The models provide a framework for inference procedures testing differences between profiles
incorporating (or not) knowledge of speech tests

* The model offers flexibility of adding other audiological tests

« The parameters can be used for sharing knowledge across databases in a federated learning
framework

* Future work foresees the definition of hearing loss rates derived from the obtained parameters
serving as monitoring tools in clinical decision support system (over time and frequency domains).
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Thank You !
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