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Introduction
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Machine Learning (ML) is the field focusing on the development of algorithms, able to achieve a certain task 
(such as recognition, prediction, etc.). If one considers a regression framework then

What is Machine Learning?

In recent years, there is the growing trend in leveraging Artificial Intelligence (AI) and Machine Learning (ML) 
to enhance the assessment and management of several decision making processes.

𝒚 𝒙Output/ target variable / Label Input/ predictor variables/ features 

The goal is to find a relationship between      and     . To achieve that, one needs to define a function          ;;;; 
such that

𝒙 𝒚 𝑓

𝒚 ≈ 𝑓(𝒙)

?

and it is data-driven, i.e. there is no assumption about the data generating function.



ML in Audiology
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Auditory Profiling Models for Understanding Audiological Tests Relationship
Audiogram Speech-in-quiet Speech-in-Noise …

AI/ML Model

Individual/Population Audiological Profile

Audiogram Speech-in-quiet Speech-in-Noise …? / /

AI/ML Model

Insights into Tests Predictive/Correlation relationship

Sanchez-Lopez et al., (2018)
Saak et al., (2024)

Smith et al., (2024) 



Motivation
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Auditory Profiling Models for Understanding Audiological Tests Relationship
• Data Heterogeneity
• Data Integration Method.

• Complex Interactions
• Lack of Inference Settings

Common Challenge: focus on direct test results, offering only a momentary snapshot of hearing function, without 
capturing the underlying progression or true auditory state.

We propose an auditory profiling solution relying on a state-space-model with the following properties:

• It estimates the underlying hearing loss trend inferring the true auditory state over the frequency domain
• It handles data heterogeneity
• It models audiological tests Interactions by incorporating knowledge of the speech tests
• It provides an inference and testing framework

Main Challenges



Model Formulation
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𝒚! = 𝜶 + 𝜷	𝜅! + 𝝐! 	

𝜅! = 𝜃 + 𝜙"𝜅!#" + 𝜔!

𝒚! = 𝜶 + 𝜷	𝜅! + 𝛾$ 	𝒙$ + 𝛾%𝒙% +	 𝝐! 	

𝜅! = 𝜃 + 𝜙"𝜅!#" + 𝜔!

Baseline Model : 

Extended Model : 

𝒚!

𝒙$  

𝒙%  

Audiogram frequency 

Speech-in-quiet

Speech-in-noise

𝜅!

𝜶

Trend of hearing loss over frequency for all age groups

Baseline hearing loss level across age

Quantifies the influence of          on𝜷 𝑦!𝜅!

Observations: Estimated Parameters:

𝑦!𝑦!#" 𝑦!&"

𝜅! 𝜅!&"𝜅!#"

We formulate a state-space model over the frequency domain of the audiogram and across  age groups.

𝑦!
'!

𝑦!
'"

𝑦!
'#

…

𝑃𝑥1𝑃
age groups

𝑓 = 𝑓", . . , 𝑓""

𝑓 = 𝑓", . . , 𝑓""



Dataset
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Data: 48,144 adults, with symmetric hearing loss, age range between 40 to 90 (French Amplifon 
Database) for which we have: Audiogram, Speech-in-quiet, Speech-in-noise. 
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We run the model over different population segments, i.e. overall, by degree of hearing loss.



Profiles
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Inference 
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t-Test for Regression Coefficients
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Heatmaps of Speech-in-quiet and speech-in-noise coefficient Estimates 

𝒚! = 𝜶 + 𝜷	𝜅! + 𝛾$ 	𝒙$ + 𝛾%𝒙% +	 𝝐! 	



Conclusions & Future Research
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• We introduced a state-space model acting on frequency and age domains

• The parameters of the model acts as auditory profiles describing population dynamics across 
these 2 domains

• The models provide a framework for inference procedures testing differences between profiles 
incorporating (or not) knowledge of speech tests

• The model offers flexibility of adding other audiological tests 

• The parameters can be used for sharing knowledge across databases in a federated learning 
framework

• Future work foresees the definition of hearing loss rates derived from the obtained parameters 
serving as monitoring tools in clinical decision support system (over time and frequency domains).
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Thank You !
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