

Methods for Big data in Audiology

Marta Campi¹, Gareth W. Peters², Perrine Morvan^{1,3}, Mareike Buhl¹, Catherine Boiteux³, Johanna Savin³, Hung Thai-Van¹

Center for Research and Innovation in Human Audiology (CERIAH), Paris, France
University of Santa Barbara, California, US
Amplifon, Paris, France

World Congress of Audiology, Paris Big Data: Modelling & Predicting September 20th, 2024

Introduction

In recent years, there is the growing trend in leveraging Artificial Intelligence (AI) and Machine Learning (ML) to enhance the assessment and management of several decision making processes.

What is Machine Learning?

Machine Learning (ML) is the field focusing on the development of algorithms, able to achieve a certain task (such as recognition, prediction, etc.). If one considers a regression framework then

Output/target variable / Label $y \leftarrow x$ Input/ predictor variables/ features

The **goal** is to find a relationship between x and y. To achieve that, one needs to define a function f such that

$$\mathbf{y} \approx f(\mathbf{x})$$

and it is **data-driven**, i.e. there is no assumption about the data generating function.

ML in Audiology

Motivation

Main Challenges

Auditory Profiling

Models for Understanding Audiological Tests Relationship

- Data Heterogeneity
- Data Integration Method.

- Complex Interactions
- Lack of Inference Settings

Common Challenge: focus on direct test results, offering only a momentary snapshot of hearing function, without capturing the underlying progression or true auditory state.

We propose an auditory profiling solution relying on a state-space-model with the following properties:

- It estimates the underlying hearing loss trend inferring the true auditory state over the frequency domain
- It handles data heterogeneity
- It models audiological tests Interactions by incorporating knowledge of the speech tests
- It provides an inference and testing framework

Model Formulation

 κ_{f-1}

We formulate a **state-space model** over the **frequency domain** of the audiogram and across **age groups**.

age groups

Observations:

- y_f Audiogram frequency
- Speech-in-quiet \boldsymbol{x}_{O}
- Speech-in-noise \boldsymbol{x}_N

Estimated Parameters:

- Trend of hearing loss over frequency for all age groups \mathcal{K}_{f}
- Baseline hearing loss level across age α
- ß Quantifies the influence of κ_f on γ_f

 κ_{f+1}

 y_{f+1}

 \mathcal{K}_{f}

 y_f

Dataset

Data: 48,144 adults, with symmetric hearing loss, age range between 40 to 90 (French Amplifon Database) for which we have: **Audiogram, Speech-in-quiet, Speech-in-noise**.

We run the model over different **population segments**, i.e. **overall**, by **degree of hearing loss**.

PTA Categories		20000 -	(18979	20246		
Degree of HL	PTA Range (dB)	15000-					
Normal	-10 to 15	s s s s s s s s s s s s s s s s s s s					
Slight	16 to 25	icipant					
Mild	26 to 40	Parti					
Moderate	41 to 55	5000 -				4826	
Moderately severe	56 to 70		3704				
Severe	71 to 90	0-				•	389
		_	Slight Mild Moderate Moderately severe Severe Hearing Loss				

Profiles

Baseline hearing loss across age Trend of hearing loss over frequency

Inference

Heatmaps of Speech-in-quiet and speech-in-noise coefficient Estimates

- We introduced a **state-space model** acting on **frequency** and **age** domains
- The **parameters** of the model acts as **auditory profiles** describing population dynamics across these 2 domains
- The models provide a framework for **inference procedures** testing differences between profiles incorporating (or not) knowledge of speech tests
- The model offers flexibility of adding other audiological tests
- The parameters can be used for **sharing knowledge** across databases in a **federated learning** framework
- **Future work** foresees the definition of hearing loss rates derived from the obtained parameters serving as monitoring tools in clinical decision support system (over time and frequency domains).

Thank You !

References

- Samira Saak, Dirk Oetting, Birger Kollmeier, and Mareike Buhl. "Integrating audiological datasets via federated merging of Auditory Profiles." arXiv preprint arXiv:2407.20765 (2024).
- Raul Sanchez-Lopez, Michal Fereczkowski, Tobias Neher, Sebastien Santurette, and Torsten Dau. Robust data-driven auditory profiling towards precision audiology. Trends in hearing, 24:2331216520973539, 2020.
- Michael L Smith, Matthew B Winn, and Matthew B Fitzgerald. A large-scale study of the relationship between degree and type of hearing loss and recognition of speech in quiet and noise. Ear and Hearing, pages 10–1097, 2024